Nothing Special   »   [go: up one dir, main page]

Skip to main content

Anomaly Detection in Blockchain Using Multi-source Embedding and Attention Mechanism

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15024))

Included in the following conference series:

  • 255 Accesses

Abstract

Due to the lack of effective regulatory mechanisms, many risks and offences have emerged in the blockchain trading market. Therefore, in order to achieve anomaly detection for blockchain networks, this paper abstracts blockchain transaction data as a graph structure and proposes GraphAEAtt, a deep learning model based on multi-source embedding and attention mechanism. GraphAEAtt uses two encoders to generate structure embeddings and feature embeddings respectively, and utilizes attention mechanisms to generate composite embeddings. By using multiple embeddings and attention mechanisms, the GraphAEAtt model can integrate the structural information and feature information of the graph, while also learning the relationships between nodes to reduce the impact of abnormal nodes on the learning process. Experimental results on several datasets show that the deep learning model proposed in this paper can better explore the implicit information in blockchain transaction graphs compared to other methods, thereby more accurately identifying abnormal transactions on the blockchain.

Supported by the National Key R&D Program of China(2022YFB2703400).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel, V., Pan, L., Rajasegarar, S.: Graph deep learning based anomaly detection in Ethereum blockchain network. In: Kutyłowski, M., Zhang, J., Chen, C. (eds.) Network and System Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia, November 25–27, 2020, Proceedings, pp. 132–148. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65745-1_8

    Chapter  Google Scholar 

  2. Hasan, M., et al.: Detecting anomalies in blockchain transactions using machine learning classifiers and explainability analysis. ArXiv abs/2401.03530 (2024)

    Google Scholar 

  3. Zhang, R., Zhang, G., Liu, L., Wang, C., Wan, S.: Anomaly detection in bitcoin information networks with multi-constrained meta path. J. Syst. Archit. 110, 101829 (2020). ISSN 1383-7621. https://doi.org/10.1016/j.sysarc.2020.101829

  4. Pham, T., Lee, S.: Anomaly Detection in the Bitcoin System - A Network Perspective (2016)

    Google Scholar 

  5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev., 21260 (2008)

    Google Scholar 

  6. Pocher, N., Zichichi, M., Merizzi, F., et al.: Detecting anomalous cryptocurrency transactions: an AML/CFT application of machine learning-based forensics. Electron Markets 33, 37 (2023). https://doi.org/10.1007/s12525-023-00654-3

    Article  Google Scholar 

  7. Ul Hassan, M., Rehmani, M.H., Chen, J.: Anomaly detection in blockchain networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 25(1), 289–318, Firstquarter (2023). https://doi.org/10.1109/COMST.2022.3205643

  8. Martin, K., et al.: Anomaly detection in blockchain using network representation and machine learning. Secur. Priv., 5 (2021)

    Google Scholar 

  9. Demetis, D.S.: Fighting money laundering with technology: a case study of Bank X in the UK. Decis. Support Syst. 105, 96–107 (2018)

    Google Scholar 

  10. Jullum, M., Lland, A., Huseby, R.B., et al.: Detecting money laundering transactions with machine learning. J. Money Laundering Control 23, 173–186 (2020)

    Article  Google Scholar 

  11. Paula, E.L., Laderia, M., Carvalho, R.N., et al.: Deep learning anomaly detection as support fraud investigation in Brazilian exports and anti-money laundering. In: Proceedings of 2016 15th IEEE International Conference on Machine Learning and Applications, pp. 954–960. Anaheim: IEEE (2016)

    Google Scholar 

  12. Weber, M., Domeniconi, G., Chen, J., et al.: Anti-Money Laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv, (2019). arXiv: 1908.02591

  13. Vermander, P., Mancisidor, A., Cabanes, I., et al.: Intelligent systems for sitting posture monitoring and anomaly detection: an overview. J. Neuroengineering Rehabil. 21(1), 28–28 (2024)

    Article  Google Scholar 

  14. Ding, K., Li, J., Bhanushali, R., et al.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM Intemational Conference on Data Mining, Society for Industrial and Applied Mathematics, pp. 594–602 (2019)

    Google Scholar 

  15. Wang, X., Cui, P., Wang, J., Pei, et al. Community preserving network embedding. In: Proceedings of 31st AAAI Conference on Artificial Intelligence, pp. 203–209. AAAI, San Francisco (2017)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the International Conference on Learning Representations, Toulon: arXiv (2017)

    Google Scholar 

  17. Hamilton, W., Ying, Z., Leskovec, I.: Inductive representation learning on large graphs. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, pp. 1024–1034. Long Beach (2017)

    Google Scholar 

  18. Li, J., Dani, H., Hu, X., et al.: Radar: residual analysis for anomaly detection in attributed networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2152–2158. Melbourne: International Joint Conferences on Artificial Intelligence (2017)

    Google Scholar 

  19. Peng, Z., Luo, M., Li, J., et al.: ANOMALOUS: a joint modelling approach for anomaly detection on attributed networks. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3513–3519. Stockholm: International Joint Conferences on Artificial Intelligence (2018)

    Google Scholar 

  20. Ding, K., Li, J., Bhanushali, R., et al.: Deep anomaly detection on attributed networks. In: Proceedings of the 19th SIAM International Conference on Data Mining, pp. 594–602. Calgary: Society for Industrial and Applied Mathematics Publications (2019)

    Google Scholar 

  21. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35(12), 12012–12038 (2023). https://doi.org/10.1109/TKDE.2021.3118815

    Article  Google Scholar 

  22. Perozzi, B., Akoglu, L.: Discovering communities and anomalies in attributed graphs: interactive visual exploration and summarization. ACM Trans. Knowl. Discov. Data (TKDD) 12(2), 1–40 (2018)

    Article  Google Scholar 

  23. Manessi, F., Rozza, A., Manzo, M., et al.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)

    Article  Google Scholar 

  24. Zhou, R., Zhang, Q., Zhang, P., et al.: Anomaly detection in dynamic attributed networks. Neural Comput. Appl. 33, 2125–2136 (2021)

    Article  Google Scholar 

  25. Yang, R., Yu, F.R., Si, P., et al.: Integrated blockchain and edge computing systems: a survey, some research issues and challenges. IEEE Commun. Surv. Tutorials 21(2), 1508–1532 (2019)

    Article  Google Scholar 

  26. Qian, L.I.A.O., Yijun, G.U.: Bitcoin network abnormal transaction detection based on LSCP algorithm. Comput. Eng. Appl. 58(15), 117–123 (2022)

    Google Scholar 

  27. Huijuan, Z.H.U., Jinfu, C.H.E.N., Zhiyuan, L.I., Shangnan, Y.I.N.: Block-chain abnormal transaction detection method based on adaptive multi-feature fusion. J. Commun. 42(5), 41–50 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenbin Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, A., Qiao, C., Qi, B., Jiang, C. (2024). Anomaly Detection in Blockchain Using Multi-source Embedding and Attention Mechanism. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15024. Springer, Cham. https://doi.org/10.1007/978-3-031-72356-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72356-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72355-1

  • Online ISBN: 978-3-031-72356-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics