Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-label Robust Feature Selection via Subspace-Sparsity Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15016))

Included in the following conference series:

  • 364 Accesses

Abstract

Multi-label feature selection is crucial for managing feature redundancy and irrelevance in high-dimensional datasets. Existing methods reduce information redundancy through subspace dimensionality reduction but often suffer from instability due to high degrees of freedom and lack flexibility. This is because of the assumption of a shared subspace for features and labels, which leads to reduced performance. To address these problems, we introduce a novel multi-label feature selection approach. Specifically, we propose a dual subspace learning approach to capture both label correlations and feature correlations for feature selection. Therefore, our method can mitigate the adverse effects of noise, redundancy and imperfect features in the quest for discriminative features. Additionally, it reduces the sensitivity of the constructed model to the noise and outliers present in the data. Empirical experiments conducted on real-world datasets illustrate the efficiency and superiority of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 13–24 (2013)

    Google Scholar 

  2. Bertsekas, D.P.: Nonlinear programming. J. Oper. Res. Soc. 48(3), 334 (1997)

    Article  Google Scholar 

  3. Braytee, A., Liu, W., Catchpoole, D.R., Kennedy, P.J.: Multi-label feature selection using correlation information. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1649–1656 (2017)

    Google Scholar 

  4. Chang, X., Nie, F., Yang, Y., Huang, H.: A convex formulation for semi-supervised multi-label feature selection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  5. Dai, J., Huang, W., Zhang, C., Liu, J.: Multi-label feature selection by strongly relevant label gain and label mutual aid. Pattern Recogn. 145, 109945 (2024)

    Article  Google Scholar 

  6. Fan, Y., Chen, B., Huang, W., Liu, J., Weng, W., Lan, W.: Multi-label feature selection based on label correlations and feature redundancy. Knowl. Based Syst. 241, 108256 (2022)

    Article  Google Scholar 

  7. Fan, Y., Liu, J., Tang, J., Liu, P., Lin, Y., Du, Y.: Learning correlation information for multi-label feature selection. Pattern Recogn. 145, 109899 (2024)

    Article  Google Scholar 

  8. Faraji, M., Seyedi, S.A., Tab, F.A., Mahmoodi, R.: Multi-label feature selection with global and local label correlation. Expert Syst. Appl. 246, 123198 (2024)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, Z., Lin, Y., Wang, C., Guo, L., Ding, W.: Multi-label feature selection based on correlation label enhancement. Inf. Sci. 647, 119526 (2023)

    Article  Google Scholar 

  11. Hu, J., Li, Y., Gao, W., Zhang, P.: Robust multi-label feature selection with dual-graph regularization. Knowl. Based Syst. 203, 106126 (2020)

    Article  Google Scholar 

  12. Hu, L., Li, Y., Gao, W., Zhang, P., Hu, J.: Multi-label feature selection with shared common mode. Pattern Recogn. 104, 107344 (2020)

    Article  Google Scholar 

  13. Jian, L., Li, J., Shu, K., Liu, H.: Multi-label informed feature selection. In: IJCAI, vol. 16, pp. 1627–33 (2016)

    Google Scholar 

  14. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  15. Li, X., Zhang, H., Zhang, R., Liu, Y., Nie, F.: Generalized uncorrelated regression with adaptive graph for unsupervised feature selection. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1587–1595 (2018)

    Article  MathSciNet  Google Scholar 

  16. Li, Z., Liu, J., Yang, Y., Zhou, X., Lu, H.: Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans. Knowl. Data Eng. 26(9), 2138–2150 (2013)

    Google Scholar 

  17. Ma, Z., Nie, F., Yang, Y., Uijlings, J.R., Sebe, N.: Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans. Multimedia 14(4), 1021–1030 (2012)

    Article  Google Scholar 

  18. Ma, Z., Nie, F., Yang, Y., Uijlings, J.R., Sebe, N., Hauptmann, A.G.: Discriminating joint feature analysis for multimedia data understanding. IEEE Trans. Multimedia 14(6), 1662–1672 (2012)

    Article  Google Scholar 

  19. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)

    Article  Google Scholar 

  20. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint 2, 1-norms minimization. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  21. Pereira, R.B., Plastino, A., Zadrozny, B., Merschmann, L.H.: Categorizing feature selection methods for multi-label classification. Artif. Intell. Rev. 49, 57–78 (2018)

    Article  Google Scholar 

  22. Sheikhpour, R., Sarram, M.A., Gharaghani, S., Chahooki, M.A.Z.: A robust graph-based semi-supervised sparse feature selection method. Inf. Sci. 531, 13–30 (2020)

    Article  MathSciNet  Google Scholar 

  23. Tan, Z., Wang, M., Xie, J., Chen, Y., Shi, X.: Deep semantic role labeling with self-attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  24. Uricchio, T., Ballan, L., Seidenari, L., Del Bimbo, A.: Automatic image annotation via label transfer in the semantic space. Pattern Recogn. 71, 144–157 (2017)

    Article  Google Scholar 

  25. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

    Google Scholar 

  26. Zhang, J., Luo, Z., Li, C., Zhou, C., Li, S.: Manifold regularized discriminative feature selection for multi-label learning. Pattern Recogn. 95, 136–150 (2019)

    Article  Google Scholar 

  27. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  28. Zhu, Y., Kwok, J.T., Zhou, Z.H.: Multi-label learning with global and local label correlation. IEEE Trans. Knowl. Data Eng. 30(6), 1081–1094 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhong or Yuling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Yuan, B., Zhong, Y., Li, Y. (2024). Multi-label Robust Feature Selection via Subspace-Sparsity Learning. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72332-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72331-5

  • Online ISBN: 978-3-031-72332-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics