Abstract
Regression is a fundamental task in machine learning. Traditional methods predict target values directly, which limits the robustness of models. More recent methods draw inspiration from human intuition, predicting intervals rather than direct values. However, completely transforming regression tasks and relying solely on a single classifier restrict the contribution of classification to regression. Moreover, data imbalance is widespread in real-world regression tasks, with many labels having insufficient samples. This leads to a lack of gradients for those samples and a significant decline in the performance of deep neural networks. Another challenge lies in generating and amplifying gradients for few-shot samples in a reasonable and effective manner. To address the problems mentioned above, we propose incorporating classification as an auxiliary task to provide additional gradients for few-shot samples. Leveraging multi-grained classifiers aids in achieving more robust features and more accurate regression. Extensive experiments conducted on three benchmark datasets demonstrate that results from our method surpass those of prior state-of-the-art approaches, evidencing the effectiveness of our strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alshammari, S., Wang, Y.X., Ramanan, D., Kong, S.: Long-tailed recognition via weight balancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6897–6907 (2022)
Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4009–4018 (2021)
Branco, P., Torgo, L., Ribeiro, R.P.: Smogn: a pre-processing approach for imbalanced regression. In: First International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp. 36–50. PMLR (2017)
Branco, P., Torgo, L., Ribeiro, R.P.: Rebagg: resampled bagging for imbalanced regression. In: Second International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp. 67–81. PMLR (2018)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. Adv. Neural Inf. Process. Syst. 32 (2019)
Cao, Y., Zifeng, W., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans. Circuits Syst. Video Technol. 28(11), 3174–3182 (2017)
Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semeval-2017 task 1: semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055 (2017)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chou, H.-P., Chang, S.-C., Pan, J.-Y., Wei, W., Juan, D.-C.: Remix: rebalanced mixup. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_9
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pP. 248–255. IEEE (2009)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evol. Comput. 17(3), 275–306 (2009)
He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: International Conference on Learning Representations (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)
Lin, D.: Probability guided loss for long-tailed multi-label image classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1577–1585 (2023)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Hao, L., Xiong, H., Xian, K., Cao, Z., Shen, C.: Counting objects by blockwise classification. IEEE Trans. Circuits Syst. Video Technol. 30(10), 3513–3527 (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26 (2013)
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, J., Cunjun, Yu., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. Adv. Neural. Inf. Process. Syst. 33, 4175–4186 (2020)
Ren, J., Zhang, M., Yu, C., Liu, Z.: Balanced mse for imbalanced visual regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7926–7935 (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vision 126(2–4), 144–157 (2018)
Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29
Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0_33
Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: a multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018)
Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 943–952 (2021)
Zhengzhuo, X., Chai, Z., Yuan, C.: Towards calibrated model for long-tailed visual recognition from prior perspective. Adv. Neural. Inf. Process. Syst. 34, 7139–7152 (2021)
Yang, Y., Zha, K., Chen, Y., Wang, H., Katabi, D.: Delving into deep imbalanced regression. In: International Conference on Machine Learning, pp. 11842–11851. PMLR (2021)
Yao, H., Wang, Y., Zhang, L., Zou, J.Y., Finn, C.: C-mixup: improving generalization in regression. Adv. Neural Inf. Process. Syst. 35, 3361–3376 (2022)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhang, S., Yang, L., Mi, M.B., Zheng, X., Yao, A.: Improving deep regression with ordinal entropy. In: The Eleventh International Conference on Learning Representations (2023)
Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)
Acknowledgements
This research was supported by Sichuan Province Scientific and Technological Achievements Transfer and Transformation Demonstration Pro-ject, grant number 2022ZHCG0007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, D., Peng, T., Chen, R., Xie, X., Cui, Z. (2024). Let Multi-classification Help Deep Imbalanced Regression. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15018. Springer, Cham. https://doi.org/10.1007/978-3-031-72338-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-72338-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72337-7
Online ISBN: 978-3-031-72338-4
eBook Packages: Computer ScienceComputer Science (R0)