Nothing Special   »   [go: up one dir, main page]

Skip to main content

Polyp-Mamba: Polyp Segmentation with Visual Mamba

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Accurate segmentation of polyps is crucial for efficient colorectal cancer detection during the colonoscopy screenings. State Space Models, exemplified by Mamba, have recently emerged as a promising approach, excelling in long-range interaction modeling with linear computational complexity. However, previous methods do not consider the cross-scale dependencies of different pixels and the consistency in feature representations and semantic embedding, which are crucial for polyp segmentation. Therefore, we introduce Polyp-Mamba, a novel unified framework aimed at overcoming the above limitations by integrating multi-scale feature learning with semantic structure analysis. Specifically, our framework includes a Scale-Aware Semantic module that enables the embedding of multi-scale features from the encoder to achieve semantic information modeling across both intra- and inter-scales, rather than the single-scale approach employed in prior studies. Furthermore, the Global Semantic Injection module is deployed to inject scale-aware semantics into the corresponding decoder features, aiming to fuse global and local information and enhance pyramid feature representation. Experimental results across five challenging datasets and six metrics demonstrate that our proposed method not only surpasses state-of-the-art methods but also sets a new benchmark in the field, underscoring the Polyp-Mamba framework’s exceptional proficiency in the polyp segmentation tasks.

Z. Xu and F. Tang—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pooler, B.D., et al.: Growth rates and histopathological outcomes of small (6–9 mm) colorectal polyps based on CT colonography surveillance and endoscopic removal. Gut 72(12), 2321–2328 (2023)

    Google Scholar 

  2. Djinbachian, R., Iratni, R., Durand, M., Marques, P., von Renteln, D.: Rates of incomplete resection of 1-to 20-mm colorectal polyps: a systematic review and meta-analysis. Gastroenterology 159(3), 904–914 (2020)

    Google Scholar 

  3. Haggar, F.A., Boushey, R.P.: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 22(04), 191–197 (2009)

    Google Scholar 

  4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  6. Li, W., Xiong, X., Li, S., Fan, F.: Hybridvps: hybrid-supervised video polyp segmentation under low-cost labels. In: IEEE Signal Processing Letters (2023)

    Google Scholar 

  7. Li, W., Lu, W., Chu, J., Fan, F.: LACINet: a lesion-aware contextual interaction network for polyp segmentation. In: IEEE Transactions on Instrumentation and Measurement (2023)

    Google Scholar 

  8. Tang, F., Xu, Z., Qu, Z., Feng, W., Jiang, X., Ge, Z.: Hunting attributes: context prototype-aware learning for weakly supervised semantic segmentation. In: CVPR (2024)

    Google Scholar 

  9. Xia, P., et al.: Generalizing to unseen domains in diabetic retinopathy with disentangled representations. In: MICCAI (2024)

    Google Scholar 

  10. Zhao, X., Tang, F., Wang, X., Xiao, J.: SFC: shared feature calibration in weakly supervised semantic segmentation. Proc. AAAI Conf. Artif. Intell. 38(7), 7525–7533 (2024). https://doi.org/10.1609/aaai.v38i7.28584

    Article  Google Scholar 

  11. Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S.: Stepwise feature fusion: local guides global. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 110–120. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_11

    Chapter  Google Scholar 

  12. Tang, F., et al.: DuAT: dual-aggregation transformer network for medical image segmentation. In: Liu, Q., et al. (eds.) Pattern Recognition and Computer Vision, pp. 343–356. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-8469-5_27

    Chapter  Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Vaswani, A., et al.: Attention is all you need: NeurIPS (2017)

    Google Scholar 

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Google Scholar 

  16. Gu, A., Dao, T.: Mamba: linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023)

  17. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: efficient visual representation learning with bidirectional state space model. arXiv preprint arXiv:2401.09417 (2024)

  18. Ma, J., Li, F., Wang, B.: U-mamba: enhancing long-range dependency for biomedical image segmentation. arXiv preprint arXiv:2401.04722 (2024)

  19. Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: long-range sequential modeling mamba for 3D medical image segmentation. arXiv preprint arXiv:2401.13560 (2024)

  20. Wang, Z., Zheng, J.Q., Zhang, Y., Cui, G., Li, L.: Mamba-UNet: UNet-like pure visual mamba for medical image segmentation. arXiv preprint arXiv:2402.05079 (2024)

  21. Ruan, J., Xiang, S.: VM-UNET: vision mamba UNet for medical image segmentation. arXiv preprint arXiv:2402.02491 (2024)

  22. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: ECCV (2022)

    Google Scholar 

  23. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  24. Liu, Y., et al.: Vmamba: visual state space model. arXiv preprint arXiv:2401.10166 (2024)

  25. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

    Google Scholar 

  26. Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: AAAI (2020)

    Google Scholar 

  27. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017(1), 4037190 (2017)

    Google Scholar 

  28. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014). https://doi.org/10.1007/s11548-013-0926-3

  29. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imag. Graph. 43, 99–111 (2015)

    Article  Google Scholar 

  30. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. In: IEEE Transactions on Medical Imaging (2015)

    Google Scholar 

  31. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  32. Dong, B., Wang, W., Fan, D.P., Li, J., Fu, H., Shao, L.: Polyp-PVT: polyp segmentation with pyramid vision transformers. In: AIR (2023)

    Google Scholar 

  33. Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: MICCAI (2020)

    Google Scholar 

  34. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: MICCAI (2021)

    Google Scholar 

  35. Jain, S., et al.: CoInNet: a convolution-involution network with a novel statistical attention for automatic polyp segmentation. IEEE Trans. Med. Imag. 42, 3987–4000 (2023)

    Google Scholar 

  36. Su, Y., Shen, Y., Ye, J., He, J., Cheng, J.: Revisiting feature propagation and aggregation in polyp segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023, pp. 632–641. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_61

    Chapter  Google Scholar 

  37. Shao, H., Zhang, Y., Hou, Q.: Polyper: boundary sensitive polyp segmentation. In: AAAI (2024)

    Google Scholar 

  38. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)

  39. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: ICCV (2017)

    Google Scholar 

  40. Fang, Y., Chen, C., Yuan, Y., Tong, K.Y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: MICCAI (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feilong Tang or Jionglong Su .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare that they have no competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 111 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z. et al. (2024). Polyp-Mamba: Polyp Segmentation with Visual Mamba. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics