Nothing Special   »   [go: up one dir, main page]

Skip to main content

Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Deep segmentation networks achieve high performance when trained on specific datasets. However, in clinical practice, it is often desirable that pretrained segmentation models can be dynamically extended to enable segmenting new organs without access to previous training datasets or without training from scratch. This would ensure a much more efficient model development and deployment paradigm accounting for the patient privacy and data storage issues. This clinically preferred process can be viewed as a continual semantic segmentation (CSS) problem. Previous CSS works would either experience catastrophic forgetting or lead to unaffordable memory costs as models expand. In this work, we propose a new continual whole-body organ segmentation model with light-weighted low-rank adaptation (LoRA). We first train and freeze a pyramid vision transformer (PVT) base segmentation model on the initial task, then continually add light-weighted trainable LoRA parameters to the frozen model for each new learning task. Through a holistically exploration of the architecture modification, we identify three most important layers (i.e., patch-embedding, multi-head attention and feed forward layers) that are critical in adapting to the new segmentation tasks, while retaining the majority of the pre-trained parameters fixed. Our proposed model continually segments new organs without catastrophic forgetting and meanwhile maintaining a low parameter increasing rate. Continually trained and tested on four datasets covering different body parts of a total of 121 organs, results show that our model achieves high segmentation accuracy, closely reaching the PVT and nnUNet upper bounds, and significantly outperforms other regularization-based CSS methods. When comparing to the leading architecture-based CSS method, our model has a substantial lower parameter increasing rate (16.7% versus 96.7%) while achieving comparable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9233–9242 (2020)

    Google Scholar 

  2. Ding, N., et al.: Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat. Mach. Intell. 5(3), 220–235 (2023)

    Article  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Plop: learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4040–4050 (2021)

    Google Scholar 

  5. Guo, D., et al.: Organ at risk segmentation for head and neck cancer using stratified learning and neural architecture search. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4223–4232 (2020)

    Google Scholar 

  6. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  7. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. In: International Conference on Learning Representations (2022)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Ji, Z., et al.: Continual segment: towards a single, unified and non-forgetting continual segmentation model of 143 whole-body organs in CT scans. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21140–21151 (2023)

    Google Scholar 

  10. Jin, D., Guo, D., Ge, J., Ye, X., Lu, L.: Towards automated organs at risk and target volumes contouring: defining precision radiation therapy in the modern era. J. Natl. Cancer Center 2(4), 306–313 (2022)

    Article  Google Scholar 

  11. Jin, D., et al.: Deeptarget: gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med. Image Anal. 68, 101909 (2021)

    Article  Google Scholar 

  12. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  13. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  14. Liu, P., et al.: Learning incrementally to segment multiple organs in a CT image. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 714–724. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_68

    Chapter  Google Scholar 

  15. Ma, C., Ji, Z., Huang, Z., Shen, Y., Gao, M., Xu, J.: Progressive voronoi diagram subdivision enables accurate data-free class-incremental learning. In: The Eleventh International Conference on Learning Representations (2023)

    Google Scholar 

  16. Ozdemir, F., Fuernstahl, P., Goksel, O.: Learn the new, keep the old: extending pretrained models with new anatomy and images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 361–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_42

    Chapter  Google Scholar 

  17. Raju, A., et al.: User-guided domain adaptation for rapid annotation from user interactions: a study on pathological liver segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 457–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_45

    Chapter  Google Scholar 

  18. Shen, Y., Ji, Z., Ma, C., Gao, M.: Continual domain adversarial adaptation via double-head discriminators. In: International Conference on Artificial Intelligence and Statistics, pp. 2584–2592. PMLR (2024)

    Google Scholar 

  19. Shi, F., et al.: Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nat. Commun. 13(1), 1–13 (2022)

    Article  MathSciNet  Google Scholar 

  20. Tang, H., et al.: Clinically applicable deep learning framework for organs at risk delineation in CT images. Nat. Mach. Intell. 1(10), 480–491 (2019)

    Article  Google Scholar 

  21. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  22. Wang, P., et al.: Accurate airway tree segmentation in CT scans via anatomy-aware multi-class segmentation and topology-guided iterative learning. IEEE Trans. Med. Imaging (2024)

    Google Scholar 

  23. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  24. Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S., Segeroth, M.: Totalsegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022)

  25. Xie, Y., Zhang, J., Xia, Y., Wu, Q.: UniMiSS: universal medical self-supervised learning via breaking dimensionality barrier. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13681, pp. 558–575. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8_33

    Chapter  Google Scholar 

  26. Ye, X., et al.: Comprehensive and clinically accurate head and neck cancer organs-at-risk delineation on a multi-institutional study. Nat. Commun. 13(1), 1–15 (2022)

    Google Scholar 

  27. Zhang, C.B., Xiao, J.W., Liu, X., Chen, Y.C., Cheng, M.M.: Representation compensation networks for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7053–7064 (2022)

    Google Scholar 

  28. Zhang, Y., Li, X., Chen, H., Yuille, A.L., Liu, Y., Zhou, Z.: Continual learning for abdominal multi-organ and tumor segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14221, pp. 35–45. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43895-0_4

    Chapter  Google Scholar 

  29. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanghexuan Ji .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 62 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, V. et al. (2024). Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics