Nothing Special   »   [go: up one dir, main page]

Skip to main content

Anatomy-Guided Pathology Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Pathological structures in medical images are typically deviations from the expected anatomy of a patient. While clinicians consider this interplay between anatomy and pathology, recent deep learning algorithms specialize in recognizing either one of the two, rarely considering the patient’s body from such a joint perspective.

In this paper, we develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features. Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy and interleaves them via a mixing strategy into the pathology-decoder for anatomy-informed pathology predictions.

In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to \(3.3\%\) as compared to strong baseline methods. Code and models are available at github.com/alexanderjaus/APEx.

R. Stiefelhagen and J. Kleesiek—Shared last author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary iou: improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)

    Google Scholar 

  5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation (2022)

    Google Scholar 

  6. Gamal, M., Siam, M., Abdel-Razek, M.: Shuffleseg: real-time semantic segmentation network. arXiv preprint arXiv:1803.03816 (2018)

  7. Gatidis, S., et al.: A whole-body fdg-pet/ct dataset with manually annotated tumor lesions. Sci. Data 9(1), 601 (2022)

    Article  Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Huang, H., et al.: Medical image segmentation with deep atlas prior. IEEE Trans. Med. Imaging 40(12), 3519–3530 (2021)

    Article  Google Scholar 

  11. Ibragimov, B., Toesca, D., Chang, D., Koong, A., Xing, L.: Combining deep learning with anatomical analysis for segmentation of the portal vein for liver sbrt planning. Phys. Med. Biol. 62(23), 8943 (2017)

    Article  Google Scholar 

  12. Jaus, A., et al.: Towards unifying anatomy segmentation: automated generation of a full-body ct dataset via knowledge aggregation and anatomical guidelines. arXiv preprint arXiv:2307.13375 (2023)

  13. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020)

    Google Scholar 

  14. Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3041–3050 (2023)

    Google Scholar 

  15. Liu, J., Lian, J., Yu, Y.: Chestx-det10: chest x-ray dataset on detection of thoracic abnormalities (2020)

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Müller, P., Meissen, F., Brandt, J., Kaissis, G., Rueckert, D.: Anatomy-driven pathology detection on chest x-rays. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 57–66. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43907-0_6

  18. Navarro, F., et al.: Shape-aware complementary-task learning for multi-organ segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 620–627. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_71

    Chapter  Google Scholar 

  19. Nguyen, D.Met al.: Lvm-med: learning large-scale self-supervised vision models for medical imaging via second-order graph matching. arXiv preprint arXiv:2306.11925 (2023)

  20. Oktay, O., et al.: Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  21. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Schultheiss, M., et al.: Lung nodule detection in chest x-rays using synthetic ground-truth data comparing cnn-based diagnosis to human performance. Sci. Rep. 11(1), 15857 (2021)

    Article  MathSciNet  Google Scholar 

  24. Seibold, C., et al.: Accurate fine-grained segmentation of human anatomy in radiographs via volumetric pseudo-labeling. arXiv preprint arXiv:2306.03934 (2023)

  25. Wang, W., Neumann, U.: Depth-aware cnn for rgb-d segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)

    Google Scholar 

  26. Wasserthal, J., et al.: Totalsegmentator: robust segmentation of 104 anatomic structures in ct images. Radiol. Artif. Intell. 5(5) (2023)

    Google Scholar 

  27. Yao, J., Cai, J., Yang, D., Xu, D., Huang, J.: Integrating 3D geometry of organ for improving medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 318–326. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_36

    Chapter  Google Scholar 

  28. Zhang, R., et al.: Ag-crc: anatomy-guided colorectal cancer segmentation in ct with imperfect anatomical knowledge. arXiv preprint arXiv:2310.04677 (2023)

  29. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  30. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

The present contribution is supported by the Helmholtz Association under the joint research school “HIDSS4Health - Helmholtz Information and Data Science School for Health and was supported by funding from the pilot program Core-Informatics of the Helmholtz Association (HGF). This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Jaus .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1754 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaus, A. et al. (2024). Anatomy-Guided Pathology Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics