Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Model Reference: Simple Yet Effective Confidence Estimation for Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15010))

  • 784 Accesses

Abstract

Effective confidence estimation is desired for image classification tasks like clinical diagnosis based on medical imaging. However, it is well known that modern neural networks often show over-confidence in their predictions. Deep Ensemble (DE) is one of the state-of-the-art methods to estimate reliable confidence. In this work, we observed that DE sometimes harms the confidence estimation due to relatively lower confidence output for correctly classified samples. Motivated by the observation that a doctor often refers to other doctors’ opinions to adjust the confidence for his or her own decision, we propose a simple but effective post-hoc confidence estimation method called Deep Model Reference (DMR). Specifically, DMR employs one individual model to make decision while a group of individual models to help estimate the confidence for its decision. Rigorous proof and extensive empirical evaluations show that DMR achieves superior performance in confidence estimation compared to DE and other state-of-the-art methods, making trustworthy image classification more practical. Source code is available at https://openi.pcl.ac.cn/OpenMedIA/MICCAI2024_DMR.

Y. Qiu—Work not related to position at Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  2. Allen-Zhu, Z., Li, Y.: Towards understanding ensemble, knowledge distillation and self-distillation in deep learning. In: ICLR (2023)

    Google Scholar 

  3. Corbière, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure prediction by learning model confidence. In: NeurIPS (2019)

    Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

  5. Ding, Q., Cao, Y., Luo, P.: Top-ambiguity samples matter: understanding why deep ensemble works in selective classification. In: NeurIPS (2023)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  7. Galdran, A., Verjans, J.W., Carneiro, G., González Ballester, M.A.: Multi-head Multi-loss model calibration. In: Greenspan, H., et al. (eds.) MICCAI 2023, Part III, pp. 108–117. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_11

  8. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: NeurIPS (2017)

    Google Scholar 

  9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  11. Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to common corruptions and perturbations. In: ICLR (2019)

    Google Scholar 

  12. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  13. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. In: ICLR (2019)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

    Google Scholar 

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)

    Google Scholar 

  17. Laurent, O., et al.: Packed ensembles for efficient uncertainty estimation. In: ICLR (2023)

    Google Scholar 

  18. Loh, C., et al.: Multi-symmetry ensembles: improving diversity and generalization via opposing symmetries. In: ICML (2023)

    Google Scholar 

  19. Moon, J., Kim, J., Shin, Y., Hwang, S.: Confidence-aware learning for deep neural networks. In: ICML (2020)

    Google Scholar 

  20. Rahaman, R., Thiéry, A.H.: Uncertainty quantification and deep ensembles. In: NeurIPS (2021)

    Google Scholar 

  21. Ramé, A., Cord, M.: DICE: diversity in deep ensembles via conditional redundancy adversarial estimation. In: ICLR (2021)

    Google Scholar 

  22. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  23. Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient ensemble and lifelong learning. In: ICLR (2020)

    Google Scholar 

  24. Xia, G., Bouganis, C.: Window-based early-exit cascades for uncertainty estimation: When deep ensembles are more efficient than single models. In: ICCV (2023)

    Google Scholar 

  25. Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., Xie, P.: Covid-CT-dataset: a CT scan dataset about covid-19 (2020)

    Google Scholar 

  26. Yang, Y., Cui, Z., Xu, J., Zhong, C., Zheng, W., Wang, R.: Continual learning with bayesian model based on a fixed pre-trained feature extractor. Visual Intelligence 1(1) (2023)

    Google Scholar 

  27. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  28. Zhang, X.Y., Xie, G.S., Li, X., Mei, T., Liu, C.L.: A survey on learning to reject. Proc. IEEE 111(2), 185–215 (2023)

    Article  Google Scholar 

  29. Zheng, X., et al.: A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology. Nat. Commun. 13(1), 2790 (2022)

    Google Scholar 

  30. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Google Scholar 

  31. Zhou, W., et al.: Interpretable artificial intelligence-based app assists inexperienced radiologists in diagnosing biliary atresia from sonographic gallbladder images. BMC Med. 22(1), 29 (2024)

    Google Scholar 

  32. Zhu, F., Cheng, Z., Zhang, X.-Y., Liu, C.-L.: Rethinking confidence calibration for failure prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXV, pp. 518–536. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_30

  33. Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.L.: Openmix: exploring outlier samples for misclassification detection. In: CVPR (2023)

    Google Scholar 

  34. Zhu, F., Zhang, X.Y., Wang, R.Q., Liu, C.L.: Learning by seeing more classes. IEEE Trans. Pattern Anal. Mach. Intell. 45, 7477–7493 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (grant No. 62071502), the Major Key Project of PCL (grant No. PCL2023A09), and Guangdong Excellent Youth Team Program (grant No. 2023B1515040025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixuan Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Qiu, Y., Che, H., Chen, H., Zheng, WS., Wang, R. (2024). Deep Model Reference: Simple Yet Effective Confidence Estimation for Image Classification. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15010. Springer, Cham. https://doi.org/10.1007/978-3-031-72117-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72117-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72116-8

  • Online ISBN: 978-3-031-72117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics