Nothing Special   »   [go: up one dir, main page]

Skip to main content

ABP: Asymmetric Bilateral Prompting for Text-Guided Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15009))

  • 991 Accesses

Abstract

Deep learning-based segmentation models have made remarkable progress in aiding pulmonary disease diagnosis by segmenting lung lesion areas in large amounts of annotated X-ray images. Recently, to alleviate the demand for medical image data and further improve segmentation performance, various studies have extended mono-modal models to incorporate additional modalities, such as diagnostic textual notes. Despite the prevalent utilization of cross-attention mechanisms or their variants to model interactions between visual and textual features, current text-guided medical image segmentation approaches still face limitations. These include a lack of adaptive adjustments for text tokens to accommodate variations in image contexts, as well as a deficiency in exploring and utilizing text-prior information. To mitigate these limitations, we propose Asymmetric Bilateral Prompting (ABP), a novel method tailored for text-guided medical image segmentation. Specifically, we introduce an ABP block preceding each up-sample stage in the image decoder. This block first integrates a symmetric bilateral cross-attention module for both textual and visual branches to model preliminary multi-modal interactions. Then, guided by the opposite modality, two asymmetric operations are employed for further modality-specific refinement. Notably, we utilize attention scores from the image branch as attentiveness rankings to prune and remove redundant text tokens, ensuring that the image features are progressively interacted with more attentive text tokens during up-sampling. Asymmetrically, we integrate attention scores from the text branch as text-prior information to enhance visual representations and target predictions in the visual branch. Experimental results on the QaTa-COV19 dataset validate the superiority of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lalmuanawma, S., Hussain, J., Chhakchhuak, L.: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos, Solitons Fract. 139, 110059 (2020)

    Article  MathSciNet  Google Scholar 

  2. Shi, F., Wang, J., Shi, J., et al.: Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 14, 4–15 (2020)

    Article  Google Scholar 

  3. Wang, K., Zhan, B., Zu, C., Wu, X., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)

    Article  Google Scholar 

  4. Degerli, A, Ahishali, M, Kiranyaz, S, et al.: Reliable covid-19 detection using chest X-ray images. In: IEEE International Conference on Image Processing, pp. 185–189 (2021)

    Google Scholar 

  5. Tang, C., Zeng, X., Zhou, L., Zhou, Q., et al.: Semi-supervised medical image segmentation via hard positives oriented contrastive learning. Pattern Recogn. 146, 110020 (2024)

    Article  Google Scholar 

  6. Qiu, Y., Liu, Y., Li, S., et al.: MiniSeg: an extremely minimum network for efficient covid-19 segmentation. In: AAAI Conference on Artificial Intelligence, vol. 35, issue (6), pp. 4846–4854 (2021)

    Google Scholar 

  7. Tang, P., Yang, P., Nie, D., et al.: Unified medical image segmentation by learning from uncertainty in an end-to-end manner. Knowl.-Based Syst. 241, 108215 (2022)

    Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T., et al.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015, Part III 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., et al.: UNet++: a nested U-Net architecture for medical image segmentation. In: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Proceedings 4, pp. 3-11. Springer,Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

  10. Huang, H., Lin, L., Tong, R., et al.: UNet 3+: a full-scale connected unet for medical image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1055–1059 (2020)

    Google Scholar 

  11. Nguyen, T., Hua, B.S., Le, N.: 3D-UCaps: 3D Capsules unet for volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part I 24, pp. 548–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_52

    Chapter  Google Scholar 

  12. Chen, J., Lu, Y., Yu, Q., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  13. Yan, X., Tang, H., Sun, S., et al.: AFTer-UNet: axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3971–3981 (2022)

    Google Scholar 

  14. Cao, H., Wang, Y., Chen, J., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

  15. Hatamizadeh, A., Nath, V., Tang, Y., et al.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: International MICCAI Brainlesion Workshop, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22

  16. Oktay, O., Schlemper, J., Folgoc, L.L., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  17. Zeng, X., Zeng, P., Tang, C., et al.: DBTrans: a dual-branch vision transformer for multi-modal brain tumor segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023, pp. 502–512. Springer, Cham (2023)

    Google Scholar 

  18. Uppal, S., Bhagat, S., Hazarika, D., et al.: Multimodal research in vision and language: a review of current and emerging trends. Inf. Fus. 77, 149–171 (2022)

    Article  Google Scholar 

  19. Chen, F.L., Zhang, D.Z., Han, M.L., et al.: VLP: a survey on vision-language pre-training. Mach. Intell. Res. 20(1), 38–56 (2023)

    Article  Google Scholar 

  20. Zhang, Z., Yao, L., Wang, B., et al.: EMIT-Diff: enhancing medical image segmentation via text-guided diffusion model. arXiv preprint arXiv:2310.12868 (2023)

  21. Wang, P., Chung, A.C.S.: DoubleU-Net.: colorectal cancer diagnosis and gland instance segmentation with text-guided feature control. In: European Conference on Computer Vision, pp. 338–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_22

  22. Li, Z., Li, Y., Li, Q., et al.: LViT: language meets vision transformer in medical image segmentation. IEEE Trans. Med. Imaging 43(1), 96–107 (2023)

    Article  Google Scholar 

  23. Tomar, N.K., Jha, D., Bagci, U., et al.: TGANet: text-guided attention for improved polyp segmentation. In: Wang, L., et al. (eds.) MICCAI 2022, pp. 151–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_15

    Chapter  Google Scholar 

  24. Poudel, K., Dhakal, M., Bhandari, P., et al.: Exploring transfer learning in medical image segmentation using vision-language models. arXiv preprint arXiv:2308.07706 (2023)

  25. Lee, G.E., Kim, S.H., Cho, J., et al.: Text-Guided cross-position attention for segmentation: case of medical image. In: Greenspan, H., et al. (eds.) MICCAI 2023, pp. 537–546. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-16437-8_15

    Chapter  Google Scholar 

  26. Zhong, Y., Xu, M., Liang, K., et al.: Ariadne’s Thread: using text prompts to improve segmentation of infected areas from chest X-ray images. In: Greenspan, H., et al. (eds.) MICCAI 2023, pp. 724–733. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_69

    Chapter  Google Scholar 

  27. Kim, S., Shen S, Thorsley D, et al.: Learned token pruning for transformers. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 784–794 (2022)

    Google Scholar 

  28. Ma, J., Guo, S., Zhang, L.: Text prior guided scene text image super-resolution. IEEE Trans. Image Process. 32, 1341–1353 (2023)

    Article  Google Scholar 

  29. Boecking, B., Usuyama, N., Bannur, S., et al.: Making the most of text semantics to improve biomedical vision–language processing. In: European Conference on Computer Vision, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_1

  30. Liu, Z., Mao, H., Wu, C.Y., et al.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC 62371325, 62071314), Sichuan Science and Technology Program 2023YFG0025, 2023YFG0101, and 2023 Science and Technology Project of Sichuan Health Com-mission 23LCYJ002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, X. et al. (2024). ABP: Asymmetric Bilateral Prompting for Text-Guided Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics