Abstract
Accurate quantification of multiple sclerosis (MS) lesions using multi-contrast magnetic resonance imaging (MRI) plays a crucial role in disease assessment. While many methods for automatic MS lesion segmentation in MRI are available, these methods typically require a fixed set of MRI modalities as inputs. Such full multi-contrast inputs are not always acquired, limiting their utility in practice. To address this issue, a training strategy known as modality dropout (MD) has been widely adopted in the literature. However, models trained via MD still underperform compared to dedicated models trained for particular modality configurations. In this work, we hypothesize that the poor performance of MD is the result of an overly constrained multi-task optimization problem. To reduce harmful task interference, we propose to incorporate task-conditional mixture-of-expert layers into our segmentation model, allowing different tasks to leverage different parameters subsets. Second, we propose a novel online self-distillation loss to help regularize the model and to explicitly promote model invariance to input modality configuration. Compared to standard MD training, our method demonstrates improved results on a large proprietary clinical trial dataset as well as on a small publicly available dataset of T2 lesions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If the modality codes are not uniformly sampled, the loss function in Eq. (2) need only be modified by the addition of task-specific weights which reflect relative sampling frequencies.
- 2.
The DiceCELoss class in the MONAI package was used. This exact formulation of the soft Dice loss can be found in [13].
References
Azad, R., Khosravi, N., Dehghanmanshadi, M., Cohen-Adad, J., Merhof, D.: Medical image segmentation on MRI images with missing modalities: a review. arXiv preprint arXiv:2203.06217 (2022)
Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 148, 77–102 (2017)
Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.-A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_50
Chen, C., Dou, Q., Jin, Y., Liu, Q., Heng, P.A.: Learning with privileged multimodal knowledge for unimodal segmentation. IEEE Trans. Med. Imaging 41(3), 621–632 (2021)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: the MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)
Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. J. Mach. Learn. Res. 23(1), 5232–5270 (2022)
Feng, Y., Pan, H., Meyer, C., Feng, X.: A self-adaptive network for multiple sclerosis lesion segmentation from multi-contrast MRI with various imaging sequences. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 472–475. IEEE (2019)
Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 772–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_75
Liu, H., et al.: ModDrop++: a dynamic filter network with intra-subject co-training for multiple sclerosis lesion segmentation with missing modalities. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 444–453. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_43
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Neverova, N., Wolf, C., Taylor, G., Nebout, F.: ModDrop: adaptive multi-modal gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1692–1706 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836 (2020)
Zhang, Y., et al.: mmFormer: multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 107–117. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_11
Zhao, Z., Yang, H., Sun, J.: Modality-adaptive feature interaction for brain tumor segmentation with missing modalities. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 183–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_18
Acknowledgments
Special thanks to Alvaro Gomariz and Matthew McLeod for their valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
This work was funded by Hoffmann-La Roche and Genentech Inc. The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Novosad, P., Carano, R.A.D., Krishnan, A.P. (2024). A Task-Conditional Mixture-of-Experts Model for Missing Modality Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-72114-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72113-7
Online ISBN: 978-3-031-72114-4
eBook Packages: Computer ScienceComputer Science (R0)