Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Adaptive Hypergraph Neural Network for Enhancing Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Medical image segmentation is crucial in the field of medical imaging, assisting healthcare professionals in analyzing images and improving diagnostic performance. Recent advancements in Transformer-based networks, which utilize self-attention mechanism, have proven their effectiveness in various medical problems, including medical imaging. However, existing self-attention mechanism in Transformers only captures pairwise correlations among image patches, neglecting non-pairwise correlations that are essential for performance enhancement. On the other hand, recently, graph-based networks have emerged to capture both pairwise and non-pairwise correlations effectively. Inspired by recent Hypergraph Neural Network (HGNN), we propose a novel hypergraph-based network for medical image segmentation. Our contribution lies in formulating novel and efficient HGNN methods for constructing Hyperedges. To effectively aggregate multiple patches with similar attributes at both feature and local levels, we introduce an improved adaptive technique leveraging the K-Nearest Neighbors (KNN) algorithm to enhance the hypergraph construction process. Additionally, we generalize the concept of Convolutional Neural Networks (CNNs) to hypergraphs. Our method achieves state-of-the-art results on two publicly available segmentation datasets, and visualization results further validate its effectiveness. Our code is released on Github: https://github.com/11yxk/AHGNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  2. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  6. Fu, S., et al.: Domain adaptive relational reasoning for 3D multi-organ segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 656–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_64

    Chapter  Google Scholar 

  7. Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision GNN: an image is worth graph of nodes. In: Advances in Neural Information Processing Systems, vol. 35, pp. 8291–8303 (2022)

    Google Scholar 

  8. Han, Y., Wang, P., Kundu, S., Ding, Y., Wang, Z.: Vision HGNN: an image is more than a graph of nodes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19878–19888 (2023)

    Google Scholar 

  9. Huang, H., et al.: Unet 3+: a full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  10. Huang, H., et al.: Scaleformer: revisiting the transformer-based backbones from a scale-wise perspective for medical image segmentation. arXiv preprint arXiv:2207.14552 (2022)

  11. Huang, X., Deng, Z., Li, D., Yuan, X.: Missformer: an effective medical image segmentation transformer. arXiv preprint arXiv:2109.07162 (2021)

  12. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Liang, Z., Zhao, K., Liang, G., Li, S., Wu, Y., Zhou, Y.: Maxformer: enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion. Knowl.-Based Syst. 280, 110987 (2023)

    Article  Google Scholar 

  15. Liu, Y., Wang, H., Chen, Z., Huangliang, K., Zhang, H.: Transunet+: redesigning the skip connection to enhance features in medical image segmentation. Knowl.-Based Syst. 256, 109859 (2022)

    Article  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Lostar, M., Rekik, I.: Deep hypergraph u-net for brain graph embedding and classification. arXiv preprint arXiv:2008.13118 (2020)

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Peng, J., et al.: Make u-net greater: an easy-to-embed approach to improve segmentation performance using hypergraph. Comput. Syst. Sci. Eng. 42(1), 319–333 (2022)

    Article  Google Scholar 

  20. Rahman, M.M., Marculescu, R.: Medical image segmentation via cascaded attention decoding. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6222–6231 (2023)

    Google Scholar 

  21. Rahman, M.M., Marculescu, R.: Multi-scale hierarchical vision transformer with cascaded attention decoding for medical image segmentation. In: Medical Imaging with Deep Learning, pp. 1526–1544. PMLR (2024)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Wang, H., et al.: Mixed transformer u-net for medical image segmentation. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2390–2394. IEEE (2022)

    Google Scholar 

  24. Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-unet: axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3971–3981 (2022)

    Google Scholar 

  25. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Ritsumeikan Advanced Research Academy (RARA) Program and the Grant in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant Nos. 20KK0234, 21H03470, and 20K21821, and in part by Zhejiang Provincial Natural Science Foundation of China (No. LZ22F020012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Wei Chen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The manuscript is approved for publication by all authors. All authors declare no conflicts of interest regarding the submission and publication.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 102 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chai, S. et al. (2024). A Novel Adaptive Hypergraph Neural Network for Enhancing Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics