Abstract
Cone-Beam Computed Tomography (CBCT) is an indispensable technique in medical imaging, yet the associated radiation exposure raises concerns in clinical practice. To mitigate these risks, sparse-view reconstruction has emerged as an essential research direction, aiming to reduce the radiation dose by utilizing fewer projections for CT reconstruction. Although implicit neural representations have been introduced for sparse-view CBCT reconstruction, existing methods primarily focus on local 2D features queried from sparse projections, which is insufficient to process the more complicated anatomical structures, such as the chest. To this end, we propose a novel reconstruction framework, namely DIF-Gaussian, which leverages 3D Gaussians to represent the feature distribution in the 3D space, offering additional 3D spatial information to facilitate the estimation of attenuation coefficients. Furthermore, we incorporate test-time optimization during inference to further improve the generalization capability of the model. We evaluate DIF-Gaussian on two public datasets, showing significantly superior reconstruction performance than previous state-of-the-art methods. The code is available at https://github.com/xmed-lab/DIF-Gaussian.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)
Cipriano, M., et al.: Deep segmentation of the mandibular canal: a new 3D annotated dataset of CBCT volumes. IEEE Access 10, 11500–11510 (2022)
Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. Josa a 1(6), 612–619 (1984)
Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)
Guédon, A., Lepetit, V.: Sugar: surface-aligned gaussian splatting for efficient 3D mesh reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775 (2023)
Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv preprint arXiv:1611.06391 (2016)
Jiang, Y.: MFCT-GAN: multi-information network to reconstruct CT volumes for security screening. J. Intell. Manuf. Spec. Equipment (2022)
Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Kyung, D., Jo, K., Choo, J., Lee, J., Choi, E.: Perspective projection-based 3D CT reconstruction from biplanar X-rays. In: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2023, pp. 1–5. IEEE (2023)
Li, B., Xue, K., Liu, B., Lai, Y.K.: BBDM: image-to-image translation with Brownian bridge diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1952–1961 (2023)
Li, M., Yao, S., Xie, Z., Chen, K., Jiang, Y.G.: GaussianBody: clothed human reconstruction via 3D Gaussian splatting. arXiv preprint arXiv:2401.09720 (2024)
Lin, Y., Luo, Z., Zhao, W., Li, X.: Learning deep intensity field for extremely sparse-view CBCT reconstruction. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14229, pp. 13–23. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_2
Lin, Y., Yang, J., Wang, H., Ding, X., Zhao, W., Li, X.: C\(\wedge \)2rv: cross-regional and cross-view learning for sparse-view CBCT reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11205–11214 (2024)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713 (2023)
Ma, C., Li, Z., Zhang, J., Zhang, Y., Shan, H.: FreeSeed: frequency-band-aware and self-guided network for sparse-view CT reconstruction. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14229, pp. 250–259. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_24
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Pan, J., Zhou, T., Han, Y., Jiang, M.: Variable weighted ordered subset image reconstruction algorithm. Int. J. Biomed. Imaging 2006 (2006)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: Neat: neural adaptive tomography. ACM Trans. Graph. (TOG) 41(4), 1–13 (2022)
Scarfe, W.C., Farman, A.G., Sukovic, P., et al.: Clinical applications of cone-beam computed tomography in dental practice. J.-Can. Dental Assoc. 72(1), 75 (2006)
Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)
Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. (2022)
Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3(11), 880–888 (2019)
Wu, W., Guo, X., Chen, Y., Wang, S., Chen, J.: Deep embedding-attention-refinement for sparse-view CT reconstruction. IEEE Trans. Instrum. Measur. (2022)
Wu, W., Hu, D., Niu, C., Yu, H., Vardhanabhuti, V., Wang, G.: Drone: dual-domain residual-based optimization network for sparse-view CT reconstruction. IEEE Trans. Med. Imaging 40(11), 3002–3014 (2021)
Yang, C., Wang, K., Wang, Y., Yang, X., Shen, W.: Neural lerplane representations for fast 4D reconstruction of deformable tissues. arXiv preprint arXiv:2305.19906 (2023)
Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10628 (2019)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)
Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 442–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_42
Zhang, Z., Liang, X., Dong, X., Xie, Y., Cao, G.: A sparse-view CT reconstruction method based on combination of densenet and deconvolution. IEEE Trans. Med. Imaging 37(6), 1407–1417 (2018)
Zhu, L., Wang, Z., Jin, Z., Lin, G., Yu, L.: Deformable endoscopic tissues reconstruction with Gaussian splatting. arXiv preprint arXiv:2401.11535 (2024)
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA volume splatting. In: Proceedings Visualization, VIS 2001, pp. 29–538. IEEE (2001)
Acknowledgements
This work was supported in part by grants from the National Natural Science Foundation of China under Grant No. 62306254, grants from the Foshan HKUST Projects under Grants FSUST21-HKUST10E and FSUST21-HKUST11E and Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, Y., Wang, H., Chen, J., Li, X. (2024). Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-72104-5_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72103-8
Online ISBN: 978-3-031-72104-5
eBook Packages: Computer ScienceComputer Science (R0)