Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Cone-Beam Computed Tomography (CBCT) is an indispensable technique in medical imaging, yet the associated radiation exposure raises concerns in clinical practice. To mitigate these risks, sparse-view reconstruction has emerged as an essential research direction, aiming to reduce the radiation dose by utilizing fewer projections for CT reconstruction. Although implicit neural representations have been introduced for sparse-view CBCT reconstruction, existing methods primarily focus on local 2D features queried from sparse projections, which is insufficient to process the more complicated anatomical structures, such as the chest. To this end, we propose a novel reconstruction framework, namely DIF-Gaussian, which leverages 3D Gaussians to represent the feature distribution in the 3D space, offering additional 3D spatial information to facilitate the estimation of attenuation coefficients. Furthermore, we incorporate test-time optimization during inference to further improve the generalization capability of the model. We evaluate DIF-Gaussian on two public datasets, showing significantly superior reconstruction performance than previous state-of-the-art methods. The code is available at https://github.com/xmed-lab/DIF-Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  2. Cipriano, M., et al.: Deep segmentation of the mandibular canal: a new 3D annotated dataset of CBCT volumes. IEEE Access 10, 11500–11510 (2022)

    Article  Google Scholar 

  3. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. Josa a 1(6), 612–619 (1984)

    Article  Google Scholar 

  4. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  5. Guédon, A., Lepetit, V.: Sugar: surface-aligned gaussian splatting for efficient 3D mesh reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775 (2023)

  6. Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv preprint arXiv:1611.06391 (2016)

  7. Jiang, Y.: MFCT-GAN: multi-information network to reconstruct CT volumes for security screening. J. Intell. Manuf. Spec. Equipment (2022)

    Google Scholar 

  8. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  Google Scholar 

  9. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  10. Kyung, D., Jo, K., Choo, J., Lee, J., Choi, E.: Perspective projection-based 3D CT reconstruction from biplanar X-rays. In: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2023, pp. 1–5. IEEE (2023)

    Google Scholar 

  11. Li, B., Xue, K., Liu, B., Lai, Y.K.: BBDM: image-to-image translation with Brownian bridge diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1952–1961 (2023)

    Google Scholar 

  12. Li, M., Yao, S., Xie, Z., Chen, K., Jiang, Y.G.: GaussianBody: clothed human reconstruction via 3D Gaussian splatting. arXiv preprint arXiv:2401.09720 (2024)

  13. Lin, Y., Luo, Z., Zhao, W., Li, X.: Learning deep intensity field for extremely sparse-view CBCT reconstruction. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14229, pp. 13–23. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_2

    Chapter  Google Scholar 

  14. Lin, Y., Yang, J., Wang, H., Ding, X., Zhao, W., Li, X.: C\(\wedge \)2rv: cross-regional and cross-view learning for sparse-view CBCT reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11205–11214 (2024)

    Google Scholar 

  15. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713 (2023)

  16. Ma, C., Li, Z., Zhang, J., Zhang, Y., Shan, H.: FreeSeed: frequency-band-aware and self-guided network for sparse-view CT reconstruction. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14229, pp. 250–259. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_24

    Chapter  Google Scholar 

  17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  18. Pan, J., Zhou, T., Han, Y., Jiang, M.: Variable weighted ordered subset image reconstruction algorithm. Int. J. Biomed. Imaging 2006 (2006)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: Neat: neural adaptive tomography. ACM Trans. Graph. (TOG) 41(4), 1–13 (2022)

    Google Scholar 

  21. Scarfe, W.C., Farman, A.G., Sukovic, P., et al.: Clinical applications of cone-beam computed tomography in dental practice. J.-Can. Dental Assoc. 72(1), 75 (2006)

    Google Scholar 

  22. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  23. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  24. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3(11), 880–888 (2019)

    Article  Google Scholar 

  25. Wu, W., Guo, X., Chen, Y., Wang, S., Chen, J.: Deep embedding-attention-refinement for sparse-view CT reconstruction. IEEE Trans. Instrum. Measur. (2022)

    Google Scholar 

  26. Wu, W., Hu, D., Niu, C., Yu, H., Vardhanabhuti, V., Wang, G.: Drone: dual-domain residual-based optimization network for sparse-view CT reconstruction. IEEE Trans. Med. Imaging 40(11), 3002–3014 (2021)

    Article  Google Scholar 

  27. Yang, C., Wang, K., Wang, Y., Yang, X., Shen, W.: Neural lerplane representations for fast 4D reconstruction of deformable tissues. arXiv preprint arXiv:2305.19906 (2023)

  28. Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10628 (2019)

    Google Scholar 

  29. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  30. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 442–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_42

    Chapter  Google Scholar 

  31. Zhang, Z., Liang, X., Dong, X., Xie, Y., Cao, G.: A sparse-view CT reconstruction method based on combination of densenet and deconvolution. IEEE Trans. Med. Imaging 37(6), 1407–1417 (2018)

    Article  Google Scholar 

  32. Zhu, L., Wang, Z., Jin, Z., Lin, G., Yu, L.: Deformable endoscopic tissues reconstruction with Gaussian splatting. arXiv preprint arXiv:2401.11535 (2024)

  33. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA volume splatting. In: Proceedings Visualization, VIS 2001, pp. 29–538. IEEE (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China under Grant No. 62306254, grants from the Foshan HKUST Projects under Grants FSUST21-HKUST10E and FSUST21-HKUST11E and Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Li .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1661 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Wang, H., Chen, J., Li, X. (2024). Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics