Nothing Special   »   [go: up one dir, main page]

Skip to main content

EchoMEN: Combating Data Imbalance in Ejection Fraction Regression via Multi-expert Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Ejection Fraction (EF) regression faces a critical challenge due to severe data imbalance since samples in the normal EF range significantly outnumber those in the abnormal range. This imbalance results in a bias in existing EF regression methods towards the normal population, undermining health equity. Furthermore, current imbalanced regression methods struggle with the head-tail performance trade-off, leading to increased prediction errors for the normal population. In this paper, we turn to ensemble learning and introduce EchoMEN, a multi-expert model designed to improve EF regression with balanced performance. EchoMEN adopts a two-stage decoupled training strategy. The first stage proposes a Label-Distance Weighted Supervised Contrastive Loss to enhance representation learning. This loss considers the label relationship among negative sample pairs, which encourages samples further apart in label space to be further apart in feature space. The second stage trains multiple regression experts independently with variably re-weighted settings, focusing on different parts of the target region. Their predictions are then combined using a weighted method to learn an unbiased ensemble regressor. Extensive experiments on the EchoNet-Dynamic dataset demonstrate that EchoMEN outperforms state-of-the-art algorithms and achieves well-balanced performance throughout all heart failure categories. Code: https://github.com/laisong-22004009/EchoMEN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers. pp. 177–186. Springer (2010)

    Google Scholar 

  2. Gong, Y., Mori, G., Tung, F.: Ranksim: Ranking similarity regularization for deep imbalanced regression. In: International Conference on Machine Learning. pp. 7634–7649. PMLR (2022)

    Google Scholar 

  3. Huang, H., Nijjar, P.S., Misialek, J.R., Blaes, A., Derrico, N.P., Kazmirczak, F., Klem, I., Farzaneh-Far, A., Shenoy, C.: Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 19(1),  1–9 (2017)

    Google Scholar 

  4. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  5. Kazemi Esfeh, M.M., Luong, C., Behnami, D., Tsang, T., Abolmaesumi, P.: A deep bayesian video analysis framework: towards a more robust estimation of ejection fraction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 582–590. Springer (2020)

    Google Scholar 

  6. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. Advances in neural information processing systems 33, 18661–18673 (2020)

    Google Scholar 

  7. Li, Y., Wang, T., Kang, B., Tang, S., Wang, C., Li, J., Feng, J.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10991–11000 (2020)

    Google Scholar 

  8. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (2017)

    Google Scholar 

  9. Loehr, L.R., Rosamond, W.D., Chang, P.P., Folsom, A.R., Chambless, L.E.: Heart failure incidence and survival (from the atherosclerosis risk in communities study). The American journal of cardiology 101(7), 1016–1022 (2008)

    Article  Google Scholar 

  10. Members:, A.F., McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., Burri, H., Butler, J., Čelutkienė, J., et al.: 2021 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc). with the special contribution of the heart failure association (hfa) of the esc. European journal of heart failure 24(1), 4–131 (2022)

    Google Scholar 

  11. Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R.: Echognn: Explainable ejection fraction estimation with graph neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 360–369. Springer (2022)

    Google Scholar 

  12. Muhtaseb, R., Yaqub, M.: Echocotr: Estimation of the left ventricular ejection fraction from spatiotemporal echocardiography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 370–379. Springer (2022)

    Google Scholar 

  13. Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C.P., Heidenreich, P.A., Harrington, R.A., Liang, D.H., Ashley, E.A., et al.: Video-based ai for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  14. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  15. Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, B.: Ultrasound video transformers for cardiac ejection fraction estimation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2021), https://api.semanticscholar.org/CorpusID:235727599

  16. Steininger, M., Kobs, K., Davidson, P., Krause, A., Hotho, A.: Density-based weighting for imbalanced regression. Machine Learning 110, 2187–2211 (2021)

    Article  MathSciNet  Google Scholar 

  17. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018)

    Google Scholar 

  18. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.: Long-tailed recognition by routing diverse distribution-aware experts. In: International Conference on Learning Representations (2020)

    Google Scholar 

  19. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. pp. 247–263. Springer (2020)

    Google Scholar 

  20. Yang, Y., Zha, K., Chen, Y., Wang, H., Katabi, D.: Delving into deep imbalanced regression. In: International Conference on Machine Learning. pp. 11842–11851. PMLR (2021)

    Google Scholar 

Download references

Acknowledgments

This research was partly supported by the National Natural Science Foundations of China (Grants No.62376267), the Key Basic Research Foundation of Shenzhen, China (JCYJ20220818100005011) and the innoHK project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Meng .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, S. et al. (2024). EchoMEN: Combating Data Imbalance in Ejection Fraction Regression via Multi-expert Network. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics