Nothing Special   »   [go: up one dir, main page]

Skip to main content

Low-Shot Prompt Tuning for Multiple Instance Learning Based Histology Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15004))

  • 713 Accesses

Abstract

In recent years, prompting pre-trained visual-language (VL) models has shown excellent generalization to various downstream tasks in both natural and medical images. However, VL models are sensitive to the choice of input text prompts, requiring careful selection of templates. Moreover, prompt tuning in the weakly supervised/multiple-instance (MIL) setting is fairly under-explored, especially in the field of computational pathology. In this work, we present a novel prompt tuning framework leveraging frozen VL encoders with (i) residual visual feature adaptation, and (ii) text-based context prompt optimization for whole slide image (WSI) level tasks i.e., classification. In contrast with existing approaches using variants of attention-based instance pooling for slide-level representations, we propose synergistic prompt-based pooling of multiple instances as the weighted sum of learnable-context and slide features. By leveraging the mean learned-prompt vectors and pooled slide features, our design facilitates different slide-level tasks. Extensive experiments on public WSI benchmark datasets reveal significant gains over existing prompting methods, including standard baseline multiple instance learners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amores, J.: Multiple instance classification: Review, taxonomy and comparative study. Artificial intelligence 201, 81–105 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  3. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: CVPR. pp. 16144–16155 (2022)

    Google Scholar 

  4. Chen, Y.C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y., Liu, J.: Uniter: Universal image-text representation learning. In: ECCV. pp. 104–120. Springer (2020)

    Google Scholar 

  5. Chikontwe, P., Nam, S.J., Go, H., Kim, M., Sung, H.J., Park, S.H.: Feature re-calibration based multiple instance learning for whole slide image classification. In: MICCAI. pp. 420–430. Springer (2022)

    Google Scholar 

  6. Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. Machine Learning with Applications 7, 100198 (2022)

    Article  Google Scholar 

  7. Dimitriou, N., Arandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: an overview. Frontiers in medicine p. 264 (2019)

    Google Scholar 

  8. Gao, P., Geng, S., Zhang, R., Ma, T., Fang, R., Zhang, Y., Li, H., Qiao, Y.: Clip-adapter: Better vision-language models with feature adapters. IJCV pp. 1–15 (2023)

    Google Scholar 

  9. He, L., Long, L.R., Antani, S., Thoma, G.R.: Histology image analysis for carcinoma detection and grading. Computer methods and programs in biomedicine 107(3), 538–556 (2012)

    Article  Google Scholar 

  10. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nature Medicine pp. 1–10 (2023)

    Google Scholar 

  11. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: ICML. pp. 2127–2136. PMLR (2018)

    Google Scholar 

  12. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H., Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML. pp. 4904–4916. PMLR (2021)

    Google Scholar 

  13. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue. https://doi.org/10.5281/zenodo1214456 (2018)

  14. Kumar, A., Raghunathan, A., Jones, R.M., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: ICLR (2022)

    Google Scholar 

  15. Lee, D., Song, S., Suh, J., Choi, J., Lee, S., Kim, H.J.: Read-only prompt optimization for vision-language few-shot learning. In: CVPR. pp. 1401–1411 (2023)

    Google Scholar 

  16. Li, H., Yang, F., Zhao, Y., Xing, X., Zhang, J., Gao, M., Huang, J., Wang, L., Yao, J.: Dt-mil: Deformable transformer for multi-instance learning on histopathological image. In: MICCAI. pp. 206–216. Springer (2021)

    Google Scholar 

  17. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. In: ACL. pp. 4582–4597 (2021)

    Google Scholar 

  18. Lu, M.Y., Chen, B., Zhang, A., Williamson, D.F., Chen, R.J., Ding, T., Le, L.P., Chuang, Y.S., Mahmood, F.: Visual language pretrained multiple instance zero-shot transfer for histopathology images. In: CVPR. pp. 19764–19775 (2023)

    Google Scholar 

  19. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nature biomedical engineering 5(6), 555–570 (2021)

    Article  Google Scholar 

  20. Qu, L., Fu, K., Wang, M., Song, Z., et al.: The rise of ai language pathologists: Exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification (2024)

    Google Scholar 

  21. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: ICML. pp. 8748–8763. PMLR (2021)

    Google Scholar 

  22. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: Eliciting knowledge from language models with automatically generated prompts. In: EMNLP. pp. 4222–4235 (2020)

    Google Scholar 

  23. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: A survey. Medical Image Analysis 67, 101813 (2021)

    Article  Google Scholar 

  24. Srinidhi, C.L., Martel, A.L.: Improving self-supervised learning with hardness-aware dynamic curriculum learning: an application to digital pathology. In: CVPR. pp. 562–571 (2021)

    Google Scholar 

  25. Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural networks. Pattern Recognition 74, 15–24 (2018)

    Article  Google Scholar 

  26. Wortsman, M., Ilharco, G., Kim, J.W., Li, M., Kornblith, S., Roelofs, R., Lopes, R.G., Hajishirzi, H., Farhadi, A., Namkoong, H., et al.: Robust fine-tuning of zero-shot models. In: CVPR. pp. 7959–7971 (2022)

    Google Scholar 

  27. Wu, C.E., Tian, Y., Yu, H., Wang, H., Morgado, P., Hu, Y.H., Yang, L.: Why is prompt tuning for vision-language models robust to noisy labels? In: CVPR. pp. 15488–15497 (2023)

    Google Scholar 

  28. Zhang, J., Kapse, S., Ma, K., Prasanna, P., Saltz, J., Vakalopoulou, M., Samaras, D.: Prompt-mil: Boosting multi-instance learning schemes via task-specific prompt tuning. In: MICCAI. vol. 14227, pp. 624–634. Springer Nature Switzerland (2023)

    Google Scholar 

  29. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: CVPR. pp. 16816–16825 (2022)

    Google Scholar 

  30. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. IJCV 130(9), 2337–2348 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by IITP grant funded by the Korean government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub) and (No. RS-2024-00439264, Development of High-Performance Machine Unlearning Technologies for Privacy Protection), Smart Health Care Program funded by the Korean National Police Agency (220222M01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Park .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 31629 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chikontwe, P., Kang, M., Luna, M., Nam, S., Park, S.H. (2024). Low-Shot Prompt Tuning for Multiple Instance Learning Based Histology Classification. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics