Abstract
Depth estimation plays a crucial role in various tasks within endoscopic surgery, including navigation, surface reconstruction, and augmented reality visualization. Despite the significant achievements of foundation models in vision tasks, including depth estimation, their direct application to the medical domain often results in suboptimal performance. This highlights the need for efficient adaptation methods to adapt these models to endoscopic depth estimation. We propose Endoscopic Depth Any Camera (EndoDAC) which is an efficient self-supervised depth estimation framework that adapts foundation models to endoscopic scenes. Specifically, we develop the Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) and employ Convolutional Neck blocks to tailor the foundational model to the surgical domain, utilizing remarkably few trainable parameters. Given that camera information is not always accessible, we also introduce a self-supervised adaptation strategy that estimates camera intrinsics using the pose encoder. Our framework is capable of being trained solely on monocular surgical videos from any camera, ensuring minimal training costs. Experiments demonstrate that our approach obtains superior performance even with fewer training epochs and unaware of the ground truth camera intrinsics. Code is available at https://github.com/BeileiCui/EndoDAC.
B. Cui, M. Islam and L. Bai—Authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arampatzakis, V., Pavlidis, G., Mitianoudis, N., Papamarkos, N.: Monocular depth estimation: A thorough review. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)
Bhat, S.F., Alhashim, I., Wonka, P.: Localbins: Improving depth estimation by learning local distributions. In: European Conference on Computer Vision. pp. 480–496. Springer (2022)
Bian, J., Li, Z., Wang, N., Zhan, H., Shen, C., Cheng, M.M., Reid, I.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. Advances in neural information processing systems 32 (2019)
Chen, T., Zhu, L., Ding, C., Cao, R., Zhang, S., Wang, Y., Li, Z., Sun, L., Mao, P., Zang, Y.: Sam fails to segment anything?–sam-adapter: Adapting sam in underperformed scenes: Camouflage, shadow, and more. arXiv preprint arXiv:2304.09148 (2023)
Collins, T., Pizarro, D., Gasparini, S., Bourdel, N., Chauvet, P., Canis, M., Calvet, L., Bartoli, A.: Augmented reality guided laparoscopic surgery of the uterus. IEEE Transactions on Medical Imaging 40(1), 371–380 (2020)
Cui, B., Islam, M., Bai, L., Ren, H.: Surgical-dino: Adapter learning of foundation model for depth estimation in endoscopic surgery. arXiv preprint arXiv:2401.06013 (2024)
Fang, Z., Chen, X., Chen, Y., Gool, L.V.: Towards good practice for cnn-based monocular depth estimation. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision. pp. 1091–1100 (2020)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 3828–3838 (2019)
Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: Unsupervised monocular depth learning from unknown cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8977–8986 (2019)
Grasa, O.G., Bernal, E., Casado, S., Gil, I., Montiel, J.: Visual slam for handheld monocular endoscope. IEEE transactions on medical imaging 33(1), 135–146 (2013)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
Hu, E.J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: LoRA: Low-rank adaptation of large language models. In: International Conference on Learning Representations (2022)
Huang, Y., Cui, B., Bai, L., Guo, Z., Xu, M., Ren, H.: Endo-4dgs: Distilling depth ranking for endoscopic monocular scene reconstruction with 4d gaussian splatting. arXiv preprint arXiv:2401.16416 (2024)
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)
Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Ozyoruk, K.B., Gokceler, G.I., Bobrow, T.L., Coskun, G., Incetan, K., Almalioglu, Y., Mahmood, F., Curto, E., Perdigoto, L., Oliveira, M., et al.: Endoslam dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Medical image analysis 71, 102058 (2021)
Park, N., Kim, S.: How do vision transformers work? In: International Conference on Learning Representations (2021)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 12179–12188 (2021)
Rattanalappaiboon, S., Bhongmakapat, T., Ritthipravat, P.: Fuzzy zoning for feature matching technique in 3d reconstruction of nasal endoscopic images. Computers in Biology and Medicine 67, 83–94 (2015)
Recasens, D., Lamarca, J., Fácil, J.M., Montiel, J., Civera, J.: Endo-depth-and-motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robotics and Automation Letters 6(4), 7225–7232 (2021)
Shao, S., Pei, Z., Chen, W., Zhu, W., Wu, X., Sun, D., Zhang, B.: Self-supervised monocular depth and ego-motion estimation in endoscopy: Appearance flow to the rescue. Medical image analysis 77, 102338 (2022)
Spencer, J., Bowden, R., Hadfield, S.: Defeat-net: General monocular depth via simultaneous unsupervised representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14402–14413 (2020)
Sun, L., Bian, J.W., Zhan, H., Yin, W., Reid, I., Shen, C.: Sc-depthv3: Robust self-supervised monocular depth estimation for dynamic scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)
Wang, A., Islam, M., Xu, M., Zhang, Y., Ren, H.: Sam meets robotic surgery: An empirical study in robustness perspective. arXiv preprint arXiv:2304.14674 (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600–612 (2004)
Wu, Q., Zhang, Y., Elbatel, M.: Self-prompting large vision models for few-shot medical image segmentation. In: MICCAI Workshop on Domain Adaptation and Representation Transfer. pp. 156–167. Springer (2023)
Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Unleashing the power of large-scale unlabeled data. arXiv preprint arXiv:2401.10891 (2024)
Yang, Z., Pan, J., Dai, J., Sun, Z., Xiao, Y.: Self-supervised lightweight depth estimation in endoscopy combining cnn and transformer. IEEE Transactions on Medical Imaging (2024)
Yao, J., Wang, X., Yang, S., Wang, B.: Vitmatte: Boosting image matting with pre-trained plain vision transformers. Information Fusion 103, 102091 (2024)
Zhang, K., Liu, D.: Customized segment anything model for medical image segmentation. arXiv preprint arXiv:2304.13785 (2023)
Zhang, P., Luo, H., Zhu, W., Yang, J., Zeng, N., Fan, Y., Wen, S., Xiang, N., Jia, F., Fang, C.: Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3d surgical plan and intraoperative indocyanine green fluorescence imaging. Surgical endoscopy 34, 3449–3459 (2020)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1851–1858 (2017)
Acknowledgments
This work was supported by Hong Kong RGC CRF C4026-21G, GRF 14211420 & 14203323; Shenzhen-Hong Kong-Macau Technology Research Programme (Type C) STIC Grant SGDX20210823103535014 (202108233000303). M. Islam was funded by EPSRC grant [EP/W00805X/1].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cui, B., Islam, M., Bai, L., Wang, A., Ren, H. (2024). EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15006. Springer, Cham. https://doi.org/10.1007/978-3-031-72089-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72089-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72088-8
Online ISBN: 978-3-031-72089-5
eBook Packages: Computer ScienceComputer Science (R0)