Nothing Special   »   [go: up one dir, main page]

Skip to main content

DermaVQA: A Multilingual Visual Question Answering Dataset for Dermatology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15005))

  • 865 Accesses

Abstract

Remote medical care has become commonplace with the establishment of patient portals, the maturation of web technologies, and the proliferation of personal devices. However, though on-demand care provides convenience and expands patient access, this same phenomenon may lead to increased workload for healthcare providers. Drafting candidate responses may help speed up physician workflows answering electronic messages. One specialty that may benefit from the latest multi-modal vision-language foundational models is dermatology. However, there is no existing dataset that incorporate dermatological health queries along with user-generated images. In this work, we contribute a new dataset, DermaVQA(https://osf.io/72rp3/), for the task of dermatology question answering and we benchmark the performance of state-of-the-art multi-modal models on multilingual response generation using relevant multi-reference metrics. The dataset and corresponding code are available on our project’s GitHub repository (https://github.com/velvinnn/DermaVQA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    github.com/Tiiiger/bert_score.

  2. 2.

    github.com/Georgetown-IR-Lab/QuickUMLS.

References

  1. Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C.L., Parikh, D., Batra, D.: Vqa: Visual question answering. International Journal of Computer Vision 123, 4 – 31 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ben Abacha, A., Agichtein, E., Pinter, Y., Demner-Fushman, D.: Overview of the medical question answering task at trec 2017 liveqa. In: TREC 2017 (2017)

    Google Scholar 

  3. Ben Abacha, A., Demner-Fushman, D.: A question-entailment approach to question answering. BMC Bioinformatics 20 (2019)

    Google Scholar 

  4. Ben Abacha, A., Hasan, S.A., Datla, V.V., Demner-Fushman, D., Müller, H.: Vqa-med: Overview of the medical visual question answering task at imageclef 2019. In: Proceedings of CLEF (Conference and Labs of the Evaluation Forum) 2019 Working Notes. 9-12 September 2019 (2019)

    Google Scholar 

  5. Bishop, T.F., Press, M.J., Mendelsohn, J.L., Casalino, L.P.: Electronic communication improves access, but barriers to its widespread adoption remain 32(8), 10.1377/hlthaff.2012.1151

    Google Scholar 

  6. Daneshjou, R., Vodrahalli, K., Liang, W., Novoa, R.A., Jenkins, M., Rotemberg, V., Ko, J.M., Swetter, S.M., Bailey, E.E., Gevaert, O., Mukherjee, P., Phung, M., Yekrang, K., Fong, B., Sahasrabudhe, R., Zou, J., Chiou, A.S.: Disparities in dermatology ai performance on a diverse, curated clinical image set. Science Advances 8 (2021)

    Google Scholar 

  7. Galley, M., Brockett, C., Sordoni, A., Ji, Y., Auli, M., Quirk, C., Mitchell, M., Gao, J., Dolan, B.: deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). pp. 445–450. Association for Computational Linguistics, Beijing, China (Jul 2015)

    Google Scholar 

  8. Glock, K., Napier, C., Gary, T., Gupta, V., Gigante, J., Schaffner, W., Wang, Q.: Measles rash identification using transfer learning and deep convolutional neural networks. In: 2021 IEEE International Conference on Big Data (Big Data). pp. 3905–3910 (2021)

    Google Scholar 

  9. Groh, M., Harris, C., Soenksen, L., Lau, F., Han, R., Kim, A., Koochek, A., Badri, O.: Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1820–1828 (2021)

    Google Scholar 

  10. He, X., Cai, Z., Wei, W., Zhang, Y., Mou, L., Xing, E., Xie, P.: Towards visual question answering on pathology images. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). pp. 708–718. Association for Computational Linguistics, Online (Aug 2021)

    Google Scholar 

  11. Hicks, S., Storås, A.M., Halvorsen, P., de Lange, T., Riegler, M., Thambawita, V.L.: Overview of imageclefmedical 2023 - medical visual question answering for gastrointestinal tract. In: Conference and Labs of the Evaluation Forum (2023)

    Google Scholar 

  12. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE Journal of Biomedical and Health Informatics 23(2), 538–546 (2019)

    Article  Google Scholar 

  13. Lau, J.J., Gayen, S., Ben Abacha, A., Demner-Fushman, D.: A dataset of clinically generated visual questions and answers about radiology images. Scientific data 5(1), 1–10 (2018)

    Article  Google Scholar 

  14. Li, C., Wong, C., Zhang, S., Usuyama, N., Liu, H., Yang, J., Naumann, T., Poon, H., Gao, J.: Llava-med: Training a large language-and-vision assistant for biomedicine in one day. arXiv preprint arXiv:2306.00890 (2023)

  15. Liu, B., Zhan, L.M., Xu, L., Ma, L., Yang, Y.F., Wu, X.M.: Slake: A semantically-labeled knowledge-enhanced dataset for medical visual question answering. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 1650–1654 (2021)

    Google Scholar 

  16. Liu, W., Tang, J., Cheng, Y., Li, W., Zheng, Y., Liang, X.: Meddg: An entity-centric medical consultation dataset for entity-aware medical dialogue generation. In: Natural Language Processing and Chinese Computing (2020)

    Google Scholar 

  17. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: Ph 2-a dermoscopic image database for research and benchmarking. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). pp. 5437–5440. IEEE (2013)

    Google Scholar 

  18. Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific data 8(1),  34 (2021)

    Article  Google Scholar 

  19. Sinsky, C.A., Shanafelt, T.D., Ripp, J.A.: The electronic health record inbox: Recommendations for relief 37(15), 4002–4003

    Google Scholar 

  20. Sun, X., Yang, J., Sun, M., Wang, K.: A benchmark for automatic visual classification of clinical skin disease images. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. pp. 206–222. Springer (2016)

    Google Scholar 

  21. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5(1),  1–9 (2018)

    Article  Google Scholar 

  22. Zeng, G., Yang, W., Ju, Z., Yang, Y., Wang, S., Zhang, R., Zhou, M., Zeng, J., Dong, X., Zhang, R., Fang, H., Zhu, P., Chen, S., Xie, P.: MedDialog: Large-scale medical dialogue datasets. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). pp. 9241–9250. Association for Computational Linguistics, Online (Nov 2020)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Lin from Microsoft Health AI and the ClinicalNLP and ImageCLEF organizers for their feedback and support for the MEDIQA-M3G and MEDIQA-MAGIC 2024 shared tasks, which utilized this dataset. We also thank our diverse annotation team for preparing the data in time for the challenge and all the participating teams who contributed to the success of these shared tasks through their interesting approaches and experiments and strong engagement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-wai Yim .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yim, Ww., Fu, Y., Sun, Z., Abacha, A.B., Yetisgen, M., Xia, F. (2024). DermaVQA: A Multilingual Visual Question Answering Dataset for Dermatology. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics