Nothing Special   »   [go: up one dir, main page]

Skip to main content

Leveraging LLM-Generated Data for Detecting Depression Symptoms on Social Media

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14958))

  • 270 Accesses

Abstract

In our work, we present the contribution of the BLUE team in the eRisk Lab task focused on identifying symptoms of depression in Reddit social media posts. The task consists of retrieving and ranking Reddit social media sentences that convey symptoms of depression from the BDI-II questionnaire. To augment our data and improve downstream models, we utilized synthetic data generated by GPT-3.5 and LLama-3 for each of the BDI-II symptoms. Our approach aimed to enrich the data with semantic diversity and emotional and anecdotal experiences that are specific to the more intimate way of sharing experiences on Reddit. We used semantic search and cosine similarity to rank the relevance of the sentences to the BDI-II symptoms. Our study compared the performance of two transformer-based models (MentalRoBERTa and a variant of MPNet) in embedding social media posts and the original/generated BDI-II responses for information retrieval. We found that using sentence embeddings from a model designed for semantic search outperformed the approach using embeddings from a model pre-trained on mental health data. Furthermore, the generated synthetic data were proved too specific for this task, the approach simply relying on the BDI-II responses had the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/news-room/fact-sheets/detail/depression.

  2. 2.

    https://openai.com/blog/chatgpt.

  3. 3.

    https://huggingface.co/meta-llama/Meta-Llama-3-8B.

  4. 4.

    https://platform.openai.com/docs/guides/gpt/completions-api.

  5. 5.

    https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1.

  6. 6.

    https://huggingface.co/mental/mental-roberta-base.

References

  1. Aich, A., et al.: Towards intelligent clinically-informed language analyses of people with bipolar disorder and schizophrenia. In: Findings of EMNLP, pp. 2871–2887 (2022)

    Google Scholar 

  2. Amin, M.M., Cambria, E., Schuller, B.W.: Will affective computing emerge from foundation models and general AI? a first evaluation on ChatGPT. IEEE Intell. Syst. 38, 2 (2023)

    Article  Google Scholar 

  3. Beck, A.T., Steer, R.A., Brown, G.: Beck depression inventory–II. Psychological assessment (1996)

    Google Scholar 

  4. Brown, T., et al.: Language models are few-shot learners. In: Proceedings of NeurIPS, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  5. Bucur, A.M., Cosma, A., Dinu, L.P.: Early risk detection of pathological gambling, self-harm and depression using BERT. In: CLEF (Working Notes) (2021)

    Google Scholar 

  6. Bucur, A.M., Cosma, A., Rosso, P., Dinu, L.P.: It’s just a matter of time: detecting depression with time-enriched multimodal transformers. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13980, pp. 200–215. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28244-7_13

    Chapter  Google Scholar 

  7. Dai, H., et al.: ChatAug: Leveraging ChatGPT for text data augmentation. arXiv preprint arXiv:2302.13007 (2023)

  8. De Choudhury, M., De, S.: Mental health discourse on reddit: self-disclosure, social support, and anonymity. In: Proceedings of ICWSM, pp. 71–80 (2014)

    Google Scholar 

  9. Eaton, W.W., Muntaner, C., Smith, C., Tien, A., Ybarra, M.: Center for epidemiologic studies depression scale: review and revision. Psychol. Test. Treat. Plan. Outcomes Assess. (2004)

    Google Scholar 

  10. Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23(1), 56 (1960)

    Article  Google Scholar 

  11. Handy, A., Mangal, R., Stead, T.S., Coffee Jr, R.L., Ganti, L.: Prevalence and impact of diagnosed and undiagnosed depression in the united states. Cureus 14(8) (2022)

    Google Scholar 

  12. Ji, S., Zhang, T., Ansari, L., Fu, J., Tiwari, P., Cambria, E.: MentalBERT: publicly available pretrained language models for mental healthcare. In: Proceedings of LREC, pp. 7184–7190 (2022)

    Google Scholar 

  13. Kroenke, K., Spitzer, R.L., Williams, J.B.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001)

    Article  Google Scholar 

  14. Lee, Y.J., Lim, C.G., Choi, Y., Lm, J.H., Choi, H.J.: PERSONACHATGEN: generating personalized dialogues using GPT-3. In: Proceedings of CCGPK Workshop, pp. 29–48 (2022)

    Google Scholar 

  15. Liu, T., et al.: Detecting symptoms of depression on reddit. In: Proceedings of WebSci, pp. 174–183 (2023)

    Google Scholar 

  16. Martínez-Castaño, R., Htait, A., Azzopardi, L., Moshfeghi, Y.: Early risk detection of self-harm and depression severity using BERT-based transformers: iLab at CLEF eRisk 2020. In: CLEF (Working Notes) (2020)

    Google Scholar 

  17. Meyer, S., Elsweiler, D., Ludwig, B., Fernandez-Pichel, M., Losada, D.E.: Do we still need human assessors? Prompt-based GPT-3 user simulation in conversational AI. In: Proceedings of CUI, pp. 1–6 (2022)

    Google Scholar 

  18. Mori, S., Ignat, O., Lee, A., Mihalcea, R.: Towards algorithmic fidelity: mental health representation across demographics in synthetic vs. human-generated data. arXiv preprint arXiv:2403.16909 (2024)

  19. Nguyen, T., Yates, A., Zirikly, A., Desmet, B., Cohan, A.: Improving the generalizability of depression detection by leveraging clinical questionnaires. In: Proceedings of ACL, pp. 8446–8459 (2022)

    Google Scholar 

  20. OpenAI: GPT-4 Technical report. arXiv (2023)

    Google Scholar 

  21. Owen, D., et al.: Enabling early health care intervention by detecting depression in users of web-based forums using language models: longitudinal analysis and evaluation. JMIR AI 2(1) (2023)

    Google Scholar 

  22. Owen, D., Camacho-Collados, J., Anke, L.E.: Towards preemptive detection of depression and anxiety in Twitter. In: Proceedings of SMM4H Workshop, pp. 82–89 (2020)

    Google Scholar 

  23. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of eRisk 2023: Early risk prediction on the internet. In: Arampatzis, A., et al. (eds.) CLEF 2023. LNCS, vol. 14163, pp. 294–315. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42448-9_22

    Chapter  Google Scholar 

  24. Rao, G., Zhang, Y., Zhang, L., Cong, Q., Feng, Z.: MGL-CNN: a hierarchical posts representations model for identifying depressed individuals in online forums. IEEE Access 8, 32395–32403 (2020)

    Article  Google Scholar 

  25. Skaik, R., Inkpen, D.: Using Twitter social media for depression detection in the Canadian population. In: Proceedings of AICCC, pp. 109–114 (2020)

    Google Scholar 

  26. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted pre-training for language understanding. In: Proceedings of NeurIPS, vol. 33, pp. 16857–16867 (2020)

    Google Scholar 

  27. Taori, R., et al.: Stanford alpaca: an instruction-following llama model (2023). https://github.com/tatsu-lab/stanford$_$alpaca

  28. Trotzek, M., Koitka, S., Friedrich, C.M.: Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Trans. Knowl. Data Eng. 32(3), 588–601 (2018)

    Article  Google Scholar 

  29. Uban, A.S., Chulvi, B., Rosso, P.: Multi-aspect transfer learning for detecting low resource mental disorders on social media. In: Proceedings of LREC, pp. 3202–3219 (2022)

    Google Scholar 

  30. Uban, A.S., Rosso, P.: Deep learning architectures and strategies for early detection of self-harm and depression level prediction. In: CLEF (Working Notes), vol. 2696, pp. 1–12 (2020)

    Google Scholar 

  31. Ubani, S., Polat, S.O., Nielsen, R.: ZeroShotDataAug: generating and augmenting training data with ChatGPT. arXiv preprint arXiv:2304.14334 (2023)

  32. Wang, Y., et al.: Self-instruct: aligning language model with self generated instructions. arXiv preprint arXiv:2212.10560 (2022)

  33. Yang, K., Ji, S., Zhang, T., Xie, Q., Ananiadou, S.: On the evaluations of ChatGPT and emotion-enhanced prompting for mental health analysis. arXiv preprint arXiv:2304.03347 (2023)

  34. Yates, A., Cohan, A., Goharian, N.: Depression and self-harm risk assessment in online forums. In: Proceedings of EMNLP, pp. 2968–2978 (2017)

    Google Scholar 

  35. Zhang, Z., Chen, S., Wu, M., Zhu, K.: Psychiatric scale guided risky post screening for early detection of depression. In: Proceedings of IJCAI (2022)

    Google Scholar 

  36. Zhang, Z., Chen, S., Wu, M., Zhu, K.: Symptom identification for interpretable detection of multiple mental disorders on social media. In: Proceedings of EMNLP, pp. 9970–9985 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the POCIDIF project in Action 1.2. “Romanian Hub for Artificial Intelligence”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Bucur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bucur, AM. (2024). Leveraging LLM-Generated Data for Detecting Depression Symptoms on Social Media. In: Goeuriot, L., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2024. Lecture Notes in Computer Science, vol 14958. Springer, Cham. https://doi.org/10.1007/978-3-031-71736-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71736-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71735-2

  • Online ISBN: 978-3-031-71736-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics