Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparative Study of Deep Learning Models in Melanoma Detection

  • Conference paper
  • First Online:
Artificial Neural Networks in Pattern Recognition (ANNPR 2024)

Abstract

The increasing number of skin cancers underscores the critical importance of early detection and accurate classification to improve treatment outcomes. Melanoma, a malignant skin cancer, has the highest mortality rate among all skin cancer types. Early detection of melanoma significantly enhances the chances of effective treatment and survival rates. This research evaluates advanced deep learning techniques in medical imaging, specifically Vision Transformers (ViT) and Convolutional Neural Networks (CNNs), for detecting melanoma. In this study, we used an annotated dataset of melanoma dermoscopic images. In addition, we employed the k-fold cross-validation technique to evaluate the reliability of our models. Our experimental results indicate that pre-trained Vision Transformers achieved an exceptional diagnostic accuracy of 97.97%, outperforming other models, specifically the pre-trained CNNs models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A.A., et al.: Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn. Neurodyn. 14, 523–533 (2020). https://doi.org/10.1007/s11571-020-09587-5

    Article  Google Scholar 

  2. Arshed, M.A., Mumtaz, S., Ibrahim, M., Ahmed, S., Tahir, M., Shafi, M.: Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7), 415 (2023). https://doi.org/10.3390/info14070415

    Article  Google Scholar 

  3. Azad, R., et al.: Advances in medical image analysis with vision transformers: a comprehensive review. Med. Image Anal. 91, 103000 (2024). https://doi.org/10.1016/j.media.2023.103000

    Article  Google Scholar 

  4. Bardou, D., Zhang, K., Ahmad, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). https://doi.org/10.1109/ACCESS.2018.2831280

    Article  Google Scholar 

  5. Barros, W., Morais, D., Fernandes Lopes, F., Torquato, M., De Melo Barbosa, R., Fernandes, M.: Proposal of the cad system for melanoma detection using reconfigurable computing. Sensors 20, 3168 (2020). https://doi.org/10.3390/s20113168

    Article  Google Scholar 

  6. Belattar, K., Adjadj, M., Bakir, M., Ait Mehdi, M.: A comparative study of CNN architectures for melanoma skin cancer classification. In: ICT Innovations, pp. 74–89 (2022)

    Google Scholar 

  7. Brinker, T.J., et al.: Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20(10), 365–372 (2018). https://doi.org/10.2196/11936

    Article  Google Scholar 

  8. Deininger, L., et al.: A comparative study between vision transformers and CNNs in digital pathology. arXiv preprint arXiv:2206.00389 (2022). https://doi.org/10.48550/arXiv.2206.00389

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  10. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). https://doi.org/10.48550/arXiv.2010.11929

  11. Faghihi, A., Fathollahi, M., Rajabi, R.: Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models. arXiv preprint arXiv:2404.01160 (2024). https://doi.org/10.48550/arXiv.2404.01160

  12. Geller, A.C., Swetter, S.M., Brooks, K., Demierre, M.F., Yaroch, A.L.: Screening, early detection, and trends for melanoma: current status (2000–2006) and future directions. J. Am. Acad. Dermatol. 57(4), 555–572 (2007). https://doi.org/10.1016/j.jaad.2007.06.032

    Article  Google Scholar 

  13. Gil, F., Osowski, S., Swiderski, B., Słowińska, M.: Ensemble of classifiers based on deep learning for medical image recognition. Metrol. Meas. Syst. 30(1), 139–156 (2023). https://doi.org/10.24425/mms.2023.144400

  14. Hosseinzadeh Kassani, S., Hosseinzadeh Kassani, P.: A comparative study of deep learning architectures on melanoma detection. Tissue Cell 58, 76–83 (2019). https://doi.org/10.1016/j.tice.2019.04.009

    Article  Google Scholar 

  15. Howard, A., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017). https://doi.org/10.48550/arXiv.1704.04861

  16. Kim, S., Gaibor, E., Haehn, D.: Web-based melanoma detection. arXiv preprint arXiv:2403.14898 (2024). https://doi.org/10.48550/arXiv.2403.14898

  17. Kruk, M., Świderski, B., Osowski, S., Kurek, J., Słowińska, M., Walecka, I.: Melanoma recognition using extended set of descriptors and classifiers. EURASIP J. Image Video Process. 2015(43), 1–10 (2015). https://doi.org/10.1186/s13640-015-0099-9

    Article  Google Scholar 

  18. Pu, Q., Xi, Z., Yin, S., Zhao, Z., Zhao, L.: Advantages of transformer and its application for medical image segmentation: a survey. Biomed. Eng. Online 23, 14 (2024). https://doi.org/10.1186/s12938-024-01212-4

    Article  Google Scholar 

  19. Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  21. Xin, C., et al.: An improved transformer network for skin cancer classification. Comput. Biol. Med. 149, 105939 (2022). https://doi.org/10.1016/j.compbiomed.2022.105939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Krzyżak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haghshenas, F., Krzyżak, A., Osowski, S. (2024). Comparative Study of Deep Learning Models in Melanoma Detection. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71602-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71601-0

  • Online ISBN: 978-3-031-71602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics