Abstract
The increasing number of skin cancers underscores the critical importance of early detection and accurate classification to improve treatment outcomes. Melanoma, a malignant skin cancer, has the highest mortality rate among all skin cancer types. Early detection of melanoma significantly enhances the chances of effective treatment and survival rates. This research evaluates advanced deep learning techniques in medical imaging, specifically Vision Transformers (ViT) and Convolutional Neural Networks (CNNs), for detecting melanoma. In this study, we used an annotated dataset of melanoma dermoscopic images. In addition, we employed the k-fold cross-validation technique to evaluate the reliability of our models. Our experimental results indicate that pre-trained Vision Transformers achieved an exceptional diagnostic accuracy of 97.97%, outperforming other models, specifically the pre-trained CNNs models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasi, A.A., et al.: Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn. Neurodyn. 14, 523–533 (2020). https://doi.org/10.1007/s11571-020-09587-5
Arshed, M.A., Mumtaz, S., Ibrahim, M., Ahmed, S., Tahir, M., Shafi, M.: Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7), 415 (2023). https://doi.org/10.3390/info14070415
Azad, R., et al.: Advances in medical image analysis with vision transformers: a comprehensive review. Med. Image Anal. 91, 103000 (2024). https://doi.org/10.1016/j.media.2023.103000
Bardou, D., Zhang, K., Ahmad, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). https://doi.org/10.1109/ACCESS.2018.2831280
Barros, W., Morais, D., Fernandes Lopes, F., Torquato, M., De Melo Barbosa, R., Fernandes, M.: Proposal of the cad system for melanoma detection using reconfigurable computing. Sensors 20, 3168 (2020). https://doi.org/10.3390/s20113168
Belattar, K., Adjadj, M., Bakir, M., Ait Mehdi, M.: A comparative study of CNN architectures for melanoma skin cancer classification. In: ICT Innovations, pp. 74–89 (2022)
Brinker, T.J., et al.: Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20(10), 365–372 (2018). https://doi.org/10.2196/11936
Deininger, L., et al.: A comparative study between vision transformers and CNNs in digital pathology. arXiv preprint arXiv:2206.00389 (2022). https://doi.org/10.48550/arXiv.2206.00389
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). https://doi.org/10.48550/arXiv.2010.11929
Faghihi, A., Fathollahi, M., Rajabi, R.: Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models. arXiv preprint arXiv:2404.01160 (2024). https://doi.org/10.48550/arXiv.2404.01160
Geller, A.C., Swetter, S.M., Brooks, K., Demierre, M.F., Yaroch, A.L.: Screening, early detection, and trends for melanoma: current status (2000–2006) and future directions. J. Am. Acad. Dermatol. 57(4), 555–572 (2007). https://doi.org/10.1016/j.jaad.2007.06.032
Gil, F., Osowski, S., Swiderski, B., Słowińska, M.: Ensemble of classifiers based on deep learning for medical image recognition. Metrol. Meas. Syst. 30(1), 139–156 (2023). https://doi.org/10.24425/mms.2023.144400
Hosseinzadeh Kassani, S., Hosseinzadeh Kassani, P.: A comparative study of deep learning architectures on melanoma detection. Tissue Cell 58, 76–83 (2019). https://doi.org/10.1016/j.tice.2019.04.009
Howard, A., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017). https://doi.org/10.48550/arXiv.1704.04861
Kim, S., Gaibor, E., Haehn, D.: Web-based melanoma detection. arXiv preprint arXiv:2403.14898 (2024). https://doi.org/10.48550/arXiv.2403.14898
Kruk, M., Świderski, B., Osowski, S., Kurek, J., Słowińska, M., Walecka, I.: Melanoma recognition using extended set of descriptors and classifiers. EURASIP J. Image Video Process. 2015(43), 1–10 (2015). https://doi.org/10.1186/s13640-015-0099-9
Pu, Q., Xi, Z., Yin, S., Zhao, Z., Zhao, L.: Advantages of transformer and its application for medical image segmentation: a survey. Biomed. Eng. Online 23, 14 (2024). https://doi.org/10.1186/s12938-024-01212-4
Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308
Xin, C., et al.: An improved transformer network for skin cancer classification. Comput. Biol. Med. 149, 105939 (2022). https://doi.org/10.1016/j.compbiomed.2022.105939
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Haghshenas, F., Krzyżak, A., Osowski, S. (2024). Comparative Study of Deep Learning Models in Melanoma Detection. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-71602-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71601-0
Online ISBN: 978-3-031-71602-7
eBook Packages: Computer ScienceComputer Science (R0)