Abstract
The launch of ChatGPT at the end of November 2022 triggered a general reflection on its benefits for supporting fact-checking workflows and practices. Between the excitement of the availability of AI systems that no longer require the mastery of programming skills and the exploration of a new field of experimentation, academics and professionals foresaw the benefits of such technology. Critics have raised concerns about the fairness and of the data used to train Large Language Models (LLMs), including the risk of artificial hallucinations and the proliferation of machine-generated content that could spread misinformation. As LLMs pose ethical challenges, how can professional fact-checking mitigate risks? This narrative literature review explores the current state of LLMs in the context of fact-checking practice, highlighting three key complementary mitigation strategies related to education, ethics and professional practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beckett, C., Yaseen, M.: Generating Change. A global survey of what news organisations are doing with AI (2023). https://static1.squarespace.com/static/64d60527c01ae7106f2646e9. Accessed 22 June 2024
Augenstein, I., et al.: Factuality challenges in the era of large language models. arXiv preprint arXiv:2310.05189 (2023)
Aydin, Ö., Karaarslan, E.: Is ChatGPT leading generative AI? What is beyond expectations? Acad. Platform J. Eng. Smart Syst. 11(3), 118–134 (2023)
Yenduri, G., et al.: GPT (Generative pre-trained transformer)-a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. arXiv, Eprint: arXiv:2305.10435v2 (2023)
Unver, H.A.: Emerging Technologies and Automated Fact-Checking: Tools, Techniques and Algorithms (2023). SSRN: https://ssrn.com/abstract=4555022
Cuartielles, R., Ramon-Vegas, X., Pont-Sorribes, C.: Retraining fact-checkers: the emergence of ChatGPT in information verification. Profesional de la información/Inf. Profess. 32(5) (2023)
Wolfe, R., Mitra, T.: The impact and opportunities of generative AI in fact-checking. In: The 2024 ACM Conference on Fairness, Accountability, and Transparency, pp. 1531–1543 (2024)
Budach, L., et al.: The effects of data quality on machine learning performance. arXiv preprint arXiv:2207.14529 (2022)
Gudivada, V.N., Apon, A., Ding, J.: Data quality considerations for big data and machine learning: going beyond data cleaning and transformations. Int. J. Adv. Softw. 10(1), 1–20 (2017)
Dwivedi, Y.K., et al.: So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manage. 71, 102642 (2023)
Hartmann, J., Schwenzow, J., Witte, M.: The political ideology of conversational AI: converging evidence on ChatGPT’s pro-environmental, left-libertarian orientation. arXiv preprint arXiv:2301.01768 (2023)
Fujimoto, S., Takemoto, K.: Revisiting the political biases of ChatGPT. Front. Artif. Intell. 6, 1232003 (2023)
Jones, B., Luger, E., Jones, R.: Generative AI & Journalism: A Rapid Risk-Based Review. Edinburgh Research Explorer, University of Edinburgh (2023)
Wach, K., et al.: The dark side of generative artificial intelligence: a critical analysis of controversies and risks of ChatGPT. Entrep. Bus. Econ. Rev. 11(2), 7–30 (2023)
Bontcheva, K., et al.: Generative AI and Disinformation: Recent Advances, Challenges, and Opportunities. European Digital Media Observatory (2024)
Spitale, G., Biller-Andorno, N., Germani, F.: AI model GPT-3 (dis) informs us better than humans. arXiv preprint arXiv:2301.11924 (2023)
Hanley, H.W.A., Durumeric, Z.: Machine-made media: monitoring the mobilization of machine-generated articles on misinformation and mainstream news websites. arXiv preprint arXiv:2305.09820 (2023)
Rawte, V., Sheth, A., Das, A.: A survey of hallucination in large foundation models. arXiv preprint arXiv:2309.05922 (2023)
Dignum, V.: Responsible artificial intelligence: designing AI for human values. ITU J. ICT Discov. 1, 1–8 (2017)
Johnson, B., Smith, J.: Towards ethical data-driven software: filling the gaps in ethics research & practice. In: 2021 IEEE/ACM 2nd International Workshop on Ethics in Software Engineering Research and Practice (SEthics) (2021)
Khan, A.A., et al.: Ethics of AI: a systematic literature review of principles and challenges. In: Proceedings of the 26th International Conference on Evaluation and Assessment in Software Engineering, pp. 383–392 (2022)
Stahl, B.C.: Concepts of ethics and their application to AI. In: Artificial Intelligence for a Better Future. SRIG, pp. 19–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69978-9_3
Jahan, N., Naveed, S., Zeshan, M., Tahir, M.A.: How to conduct a systematic review: a narrative literature review. Cureus 8(11), e864 (2016)
Baumeister, R.F., Leary, M.R.: Writing narrative literature reviews. Rev. Gen. Psychol. 1(3), 311–320 (1997)
Rother, E.T.: Systematic literature review X narrative review. Acta Paulista de Enfermagem 20, v–vi (2007)
Dierickx, L., Lindén, C.-G., Opdahl, A.L.: Automated fact-checking to support professional practices: systematic literature review and meta-analysis. Int. J. Commun. 17, 21 (2023)
Dierickx, L., Lindén, C., Opdahl, A.: The information disorder level (IDL) index: a human-based metric to assess the factuality of machine-generated content. In: Multidisciplinary International Symposium On Disinformation in Open Online Media, pp. 60–71 (2023)
Singer, J.B.: Border patrol: the rise and role of fact-checkers and their challenge to journalists’ normative boundaries. Journalism 22(8), 1929–1946 (2021)
Mena, P.: Principles and boundaries of fact-checking: journalists’ perceptions. Journal. Pract. 13(6), 657–672 (2019)
Chen, C., Shu, K.: Combating misinformation in the age of LLMs: opportunities and challenges. arXiv preprint arXiv:2311.05656 (2023)
Shapiro, I., Brin, C., Bédard-Brûlé, I., Mychajlowycz, K.: Verification as a strategic ritual: how journalists retrospectively describe processes for ensuring accuracy. Journal. Pract. 7(6), 657–673 (2013)
Martin, N., Comm, B. A.: Information verification in the age of digital journalism. In: Special Libraries Association Annual Conference, Vancouver (2014)
Hermida, A.: Tweets and truth: journalism as a discipline of collaborative verification. Journal. Pract. 6(5–6), 659–668 (2012)
Graves, L., Amazeen, M.A.: Fact-checking as idea and practice in journalism. In: Oxford Research Encyclopedia of Communication. Oxford University Press, Oxford (2019)
Brandtzaeg, P.B., Lüders, M., Spangenberg, J., Rath-Wiggins, L., Følstad, A.: Emerging journalistic verification practices concerning social media. Journal. Pract. 10(3), 323–342 (2016)
Konstantinovskiy, L., Price, O., Babakar, M., Zubiaga, A.: Toward automated fact-checking: developing an annotation schema and benchmark for consistent automated claim detection. Digit. Threats Res. Pract. 2(2), 1–16 (2021)
Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 18–22 (2014)
Sheikhi, G., Touileb, S., Khan, S.: Automated claim detection for fact-checking: a case study using Norwegian pre-trained language models. In: Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 1–9 (2023)
Al-Ghamdi, L.M.: Towards adopting AI techniques for monitoring social media activities. Sustain. Eng. Innov. 3(1), 15–22 (2021)
Himma-Kadakas, M., Ojamets, I.: Debunking false information: investigating journalists’ fact-checking skills. Digit. Journal. 10(5), 866–887 (2022)
Johnson, P.R.: A case of claims and facts: automated fact-checking the future of journalism’s authority. Digit. Journal. 1–24 (2023)
Hassan, N., Arslan, F., Li, C., Tremayne, M.: Toward automated fact-checking: detecting check-worthy factual claims by ClaimBuster. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1803–1812 (2017)
Atanasova, P., et al.: Automatic fact-checking using context and discourse information. J. Data Inf. Qual. (JDIQ) 11(3), 1–27 (2019)
Guo, Z., Schlichtkrull, M., Vlachos, A.: A survey on automated fact-checking. Trans. Assoc. Comput. Linguist. 10, 178–206 (2022)
Lecheler, S., Kruikemeier, S.: Re-evaluating journalistic routines in a digital age. New Media Soc. 18(1), 156–171 (2016)
Lim, C.: Checking how fact-checkers check. Res. Polit. 5(3), 2053168018786848 (2018)
Steensen, S., Kalsnes, B., Westlund, O.: The limits of live fact-checking: epistemological consequences of introducing a breaking news logic to political fact-checking. New Media Soc., 14614448231151436 (2023)
Nakov, P., et l.: Automated fact-checking for assisting human fact-checkers. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 4826–4832. IJCAI (2021)
Müller, N., Wiik, J.: From gatekeeper to gate-opener: open-source spaces in investigative journalism. Journal. Pract. 17, 189–208 (2023)
Powers, M.: In forms that are familiar and yet-to-be invented. Am. Journal. Discourse Technol. Specific Work. J. Commun. Inq. 36(1), 24–43 (2012)
Olsen, G.R.: Enthusiasm and alienation: how implementing automated journalism affects the work meaningfulness of three newsroom groups. Journal. Pract., 1–17 (2023)
Lopez, M.G., Porlezza, C., Cooper, G., Makri, S., MacFarlane, A., Missaoui, S.: A question of design: strategies for embedding AI-driven tools into journalistic work routines. Digit. Journal. 11(3), 484–503 (2023)
Dierickx, L., Lindén, C.G.: Journalism and fact-checking technologies: understanding user needs. Communication+1 10(1) (2023)
Samuelsen, R.J., Kalsnes, B., Steensen, S.: The relevance of technology to information verification: insights from norwegian journalism during a national election. Journal. Pract. 1–20 (2023)
Edwardsson, M.P., Al-Saqaf, W., Nygren, G.: Verification of digital sources in Swedish newsrooms-a technical issue or a question of newsroom culture? Journal. Pract. 17(8), 1678–1695 (2023)
Weikmann, T., Lecheler, S.: Cutting through the hype: understanding the implications of deepfakes for the fact-checking actor-network. Digit. Journal. 1–18 (2023)
Reese, S.D.: Exploring the institutional space of journalism. Problemi dell Informazione 48(1) (2023)
Pastor-Galindo, J., Nespoli, P., Mármol, F., Pérez, G.: The not yet exploited goldmine of OSINT: opportunities, open challenges and future trends. IEEE Access. 8, 10282–10304 (2020)
Westlund, O., Larsen, R., Graves, L., Kavtaradze, L., Steensen, S.: Technologies and fact-checking: a sociotechnical mapping. In: Disinformation Studies: Perspectives from An Emerging Field, pp. 193–236. Labcom Communication & Arts, Covilhã, Portugal (2022)
Lindén, C.G.: What makes a reporter human? A research agenda for augmented journalism. Questions de communication 37, 337–351 (2020)
Shkliarevsky, G.: The Emperor with No Clothes: Chomsky Against ChatGPT (2023). Available at SSRN 4439662
Larssen, U.: “But verifying facts is what we do!”: fact-checking and journalistic professional autonomy. In: Democracy and Fake News: Information Manipulation and Post-Truth Politics, pp. 199–213. Routledge, London (2020)
Komatsu, T., et l.: AI should embody our values: investigating journalistic values to inform AI technology design. In: Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, pp. 1–13, Association for Computing Machinery, New York (2020)
Schapals, A.K., Porlezza, C.: Assistance or resistance? Evaluating the intersection of automated journalism and journalistic role conceptions. Media Commun. 8(3), 16–26 (2020)
Graves, L., Cherubini, F.: The rise of fact-checking sites in Europe. Digital News Project Report (2016)
Ward, S.J.A.: Global journalism ethics: widening the conceptual base. Glob. Media J. 1, 137 (2008)
de Haan, Y., van den Berg, E., Goutier, N., Kruikemeier, S., Lecheler, S.: Invisible friend or foe? How journalists use and perceive algorithmic-driven tools in their research process. Digit. Journal. 10(10), 1775–1793 (2022)
Leiser, M.: Bias, journalistic endeavours, and the risks of artificial intelligence. In: Editor, F., Editor, S. (eds.) Artificial Intelligence and the Media, pp. 8–32. Edward Elgar Publishing, Cheltenham (2022)
Ferrario, A., Loi, M.: How explainability contributes to trust in AI. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1457–1466. Association for Computing Machinery, New York (2022)
Jacovi, A., Marasović, A., Miller, T., Goldberg, Y.: Formalizing trust in artificial intelligence: prerequisites, causes and goals of human trust in AI. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 624–635. Association for Computing Machinery, New York (2021)
Lim, G., Perrault, S.T.: Explanation Preferences in XAI Fact-Checkers. European Society for Socially Embedded Technologies (EUSSET) (2022)
Micallef, N., Armacost, V., Memon, N., and Patil, S.: True or false: studying the work practices of professional fact-checkers. In: Proceedings of the ACM on Human-Computer Interaction, vol. 6, pp. 1–44. Association for Computing Machinery, New York (2022)
Nguyen, A.T., Kharosekar, A., Krishnan, S., Tate, E., Wallace, B.C., Lease, M.: Believe it or not: designing a human-AI partnership for mixed-initiative fact-checking. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pp. 189–199. Association for Computing Machinery, New York (2018)
Demartini, G., Mizzaro, S., Spina, D.: Human-in-the-loop artificial intelligence for fighting online misinformation: challenges and opportunities. IEEE Data Eng. Bull. 43(3), 65–74 (2020)
Hamed, A. A., Zachara-Szymanska, M., Wu, X.: Safeguarding authenticity for mitigating the harms of generative AI: Issues, research agenda, and policies for detection, fact-checking, and ethical AI. iScience 27(2), 108782 (2024)
Van Witsen, A., Takahashi, B.: How science journalists verify numbers and statistics in news stories: towards a theory. Journal. Pract. 1–20 (2021)
Stray, J.: Making artificial intelligence work for investigative journalism. In: Thurman, N., Lewis, S.C., Kunert, J. (eds.) Algorithms, Automation, and News, pp. 97–118. Routledge, London (2021)
Montoro-Montarroso, A., et al.: Fighting disinformation with artificial intelligence: fundamentals, advances and challenges. Profesional de la información 32(3) (2023)
Currie, G.M.: Academic integrity and artificial intelligence: is ChatGPT hype, hero or heresy? In: Seminars in Nuclear Medicine, pp. 1–13. Springer, Heidelberg (2023)
Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023)
Li, Z.: The dark side of chatGPT: legal and ethical challenges from stochastic parrots and hallucination. arXiv preprint arXiv:2304.14347 (2023)
Ray, P.P.: ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 3(1), 121–154 (2023)
Yu, W.: A survey of knowledge-enhanced text generation. ACM Comput. Surv. 54(11s), 1–38 (2022)
Kreps, S., McCain, R.M., Brundage, M.: All the news that’s fit to fabricate: AI-generated text as a tool of media misinformation. J. Exp. Political Sci. 9(1), 104–117 (2022)
Brugger, F., Gehrke, C.: Skilling and deskilling: technological change in classical economic theory and its empirical evidence. Theory Soc. 47, 663–689 (2018)
Polyportis, A., Pahos, N.: Navigating the perils of artificial intelligence: a focused review on ChatGPT and responsible research and innovation. Humanit. Soc. Sci. Commun. 11(1), 1–10 (2024)
LaGrandeur, K.: The consequences of AI hype. AI Ethics, 1–4 (2023)
van Dalen, A.: Algorithmic Gatekeeping for Professional Communicators: Power, Trust, and Legitimacy. Taylor & Francis, London (2023)
Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics. Cutter Bus. Technol. J. 31(2), 47–53 (2018)
Bartneck, C., Lütge, C., Wagner, A., Welsh, S.: Trust and fairness in AI systems. In: An Introduction to Ethics in Robotics and AI. SE, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51110-4_4
Opdahl, A.L., et al.: Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023)
Deuze, M., Beckett, C.: Imagination, algorithms and news: developing AI literacy for journalism. Digit. Journal. 10(10), 1913–1918 (2022)
Lopezosa, C., Codina, L., Pont-Sorribes, C., Vállez, M.: Use of generative artificial intelligence in the training of journalists: challenges, uses and training proposal. Profesional de la información/Inf. Prof. 32(4) (2023)
Becker, K., et al.: Policies in parallel? A comparative study of journalistic AI policies in 52 Global News Organisations. Oxford University Research Archive, pp. 1–37 (2023)
Weisz, J.D., Muller, M., He, J., Houde, S.: Toward general design principles for generative AI applications. arXiv preprint arXiv:2301.05578 (2023)
Tonmoy, S.M., et al.: A comprehensive survey of hallucination mitigation techniques in large language models. arXiv preprint arXiv:2401.01313 (2024)
Feldman, P., Foulds, J.R., Pan, S.: Trapping LLM hallucinations using tagged context prompts. arXiv preprint arXiv:2306.06085 (2023)
Bsharat, S.M., Myrzakhan, A., Shen, Z.: Principled instructions are all you need for questioning LLaMA-1/2, GPT-3.5/4. arXiv preprint arXiv:2312.16171 (2023)
White, J., et al.: A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382 (2023)
Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2020)
Weber-Wulff, D., et al.: Testing of detection tools for AI-generated text. Int. J. Educ. Integr. 19(1), 26 (2023)
Acknowledgments
This research was funded by EU CEF Grant No. 101158604.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dierickx, L., van Dalen, A., Opdahl, A.L., Lindén, CG. (2024). Striking the Balance in Using LLMs for Fact-Checking: A Narrative Literature Review. In: Preuss, M., Leszkiewicz, A., Boucher, JC., Fridman, O., Stampe, L. (eds) Disinformation in Open Online Media. MISDOOM 2024. Lecture Notes in Computer Science, vol 15175. Springer, Cham. https://doi.org/10.1007/978-3-031-71210-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-71210-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71209-8
Online ISBN: 978-3-031-71210-4
eBook Packages: Computer ScienceComputer Science (R0)