Nothing Special   »   [go: up one dir, main page]

Skip to main content

Resilience to Chain-Quality Attacks in Fair Separability

  • Conference paper
  • First Online:
Computer Security – ESORICS 2024 (ESORICS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14985))

Included in the following conference series:

  • 402 Accesses

Abstract

In recent years, a new research area called order-fairness has emerged within State Machine Replication (SMR). Its goal is to prevent malicious processes from reordering transactions, ensuring that the SMR output reflects the local orderings observed by processes. One of the advanced approaches to addressing this challenge is fair separability, which is designed to mitigate cyclic dependencies present in transaction dependency graphs. However, in the existing implementation of fair separability, a transaction input by a Byzantine process can be output with only \(\mathcal {O}(1)\) resources, whereas outputting a transaction input by a correct process requires \(\mathcal {O}(n)\) resources. This vulnerability exposes the protocol to chain-quality attacks.

In this paper, we propose an implementation of fair separability where the cost of outputting transactions remains consistent for the inputs of all processes, which enhances resilience to chain-quality attacks.

Authors are listed alphabetically.

Z. Lu and P. Zarbafian—Led the effort with equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  Google Scholar 

  2. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_31

    Chapter  Google Scholar 

  3. Cachin, C., Mićić, J., Steinhauer, N., Zanolini, L.: Quick order fairness. In: Eyal, I., Garay, J. (eds.) Financial Cryptography and Data Security, FC 2022, LNCS, vol. 13411, pp. 316–333 Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18283-9_15

  4. Daian, P., et al.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In: S &P, pp.910–927. IEEE (2020)

    Google Scholar 

  5. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM (JACM) 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  6. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 211–220 (2003)

    Google Scholar 

  7. Gramoli, V., Lu, Z., Tang, Q. and Zarbafian, P.: AOAB: optimal and fair ordering of financial transactions. In: 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN (2024)

    Google Scholar 

  8. Gramoli, V., Lu, Z., Tang, Q., Zarbafian, P.: Optimal asynchronous byzantine consensus with fair separability. Cryptology ePrint Archive, Paper 2024/545 (2024). https://eprint.iacr.org/2024/545

  9. Gueta, G.G., et al.: SBFT: a scalable and decentralized trust infrastructure. In: 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 568–580. IEEE (2019)

    Google Scholar 

  10. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Distributed systems (2nd ed.), pp. 97–145. ACM New York, NY, USA (1993)

    Google Scholar 

  11. Herlihy, M.P., and Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

    Google Scholar 

  12. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: fast, strong order-fairness in byzantine consensus. In: ConsensusDays 21 (2021)

    Google Scholar 

  13. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consensus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_16

    Chapter  Google Scholar 

  14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative byzantine fault tolerance. ACM Trans. Comput. Syst. (TOCS) 27(4), 1–39 (2010)

    Article  Google Scholar 

  15. Kursawe, K.: Wendy grows up: more order fairness. In: Bernhard, M., et al. (eds.) FC 2021. LNCS, vol. 12676, pp. 191–196. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-63958-0_17

    Chapter  Google Scholar 

  16. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, pp. 203–226. Association for Computing Machinery (2019)

    Google Scholar 

  17. Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukolić, M.: XFT: practical fault tolerance beyond crashes. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI 2016, pp. 485–500, USA, USENIX Association (2016)

    Google Scholar 

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized business review, p. 21260 (2008)

    Google Scholar 

  19. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM (JACM) 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  20. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark is the forest? In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 198–214 (2022)

    Google Scholar 

  21. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

    Google Scholar 

  22. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  23. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pp. 347–356 (2019)

    Google Scholar 

  24. Zarbafian, P., Gramoli, V.: Aion: secure transaction ordering using TEEs. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds.) Computer Security - ESORICS 2023. ESORICS 2023. Lecture Notes in Computer Science, vol. 14347, pp. 332–350. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-51482-1_17

  25. Zarbafian, P., Gramoli, V.: Lyra: fast and scalable resilience to reordering attacks in blockchains. In: 2023 IEEE International Parallel & Distributed Processing Symposium, IEEE (2023)

    Google Scholar 

  26. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus without byzantine oligarchy. In: OSDI, pp. 633–649 (2020)

    Google Scholar 

Download references

Acknowledgments

This research is supported under Australian Research Council Future Fellowship funding scheme (project number 180100496) entitled “The Red Belly Blockchain: A Scalable Blockchain for Internet of Things”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenliang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gramoli, V., Lu, Z., Tang, Q., Zarbafian, P. (2024). Resilience to Chain-Quality Attacks in Fair Separability. In: Garcia-Alfaro, J., Kozik, R., Choraś, M., Katsikas, S. (eds) Computer Security – ESORICS 2024. ESORICS 2024. Lecture Notes in Computer Science, vol 14985. Springer, Cham. https://doi.org/10.1007/978-3-031-70903-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70903-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70902-9

  • Online ISBN: 978-3-031-70903-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics