Nothing Special   »   [go: up one dir, main page]

Skip to main content

Explanatory Interactive Machine Learning with Counterexamples from Constrained Large Language Models

  • Conference paper
  • First Online:
KI 2024: Advances in Artificial Intelligence (KI 2024)

Abstract

In Explanatory Interactive Machine Learning (XIML), counterexamples refine machine learning models by augmenting human feedback. Traditionally created through random sampling or data augmentation, the emergence of Large Language Models (LLMs) now allows an infinite amount of new training instances to be queried through simple natural language prompts. However, validation of LLM results becomes crucial as they may produce potentially inaccurate or “hallucinated” content, which has led to an increased incorporation of logical reasoning with LLMs in recent literature. We present LlmXiml, a framework that integrates logically constrained LLMs into XIML. Our results indicate that LLM-generated counterexamples improve the model performance and logical reasoning increases the counterexamples’ correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://platform.openai.com/docs/models/gpt-3-5-turbo.

  2. 2.

    https://platform.openai.com/docs/models/gpt-3-5-turbo.

  3. 3.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

  4. 4.

    All data sets from https://www.kaggle.com/datasets.

References

  1. Chung, J.J.Y., Kamar, E., Amershi, S.: Increasing diversity while maintaining accuracy: text data generation with large language models and human interventions. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 575–593 (2023). https://aclanthology.org/2023.acl-long.34.pdf

  2. Hammond, K.J., Leake, D.B.: Large language models need symbolic AI. In: d’Avila Garcez, A.S., Besold, T.R., Gori, M., Jiménez-Ruiz, E. (eds.) Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena, Italy, 3–5 July 2023. CEUR Workshop Proceedings, vol. 3432, pp. 204–209. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3432/paper17.pdf

  3. Heidrich, L., Slany, E., Scheele, S., Schmid, U.: FairCaipi: a combination of explanatory interactive and fair machine learning for human and machine bias reduction. Mach. Learn. Knowl. Extr. 5, 1519–1538 (2023). https://doi.org/10.3390/make5040076

    Article  Google Scholar 

  4. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Log. Program. 11(2–3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566

    Article  MathSciNet  Google Scholar 

  5. Nye, M.I., Tessler, M.H., Tenenbaum, J.B., Lake, B.M.: Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 25192–25204 (2021). https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html

  6. Raedt, L.D., Dries, A., Thon, I., den Broeck, G.V., Verbeke, M.: Inducing probabilistic relational rules from probabilistic examples. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1835–1843. AAAI Press (2015). http://ijcai.org/Abstract/15/261

  7. Ribeiro, M.T., Lundberg, S.M.: Adaptive testing and debugging of NLP models. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, 22–27 May 2022, pp. 3253–3267. Association for Computational Linguistics (2022). https://doi.org/10.18653/V1/2022.ACL-LONG.230

  8. Shivaswamy, P., Joachims, T.: Coactive learning. J. Artif. Intell. Res. 53, 1–40 (2015). https://doi.org/10.1613/jair.4539

    Article  MathSciNet  Google Scholar 

  9. Slany, E., Ott, Y., Scheele, S., Paulus, J., Schmid, U.: CAIPI in practice: towards explainable interactive medical image classification. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds.) AIAI 2022, vol. 652, pp. 389–400. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08341-9_31

    Chapter  Google Scholar 

  10. Slany, E., Scheele, S., Schmid, U.: Bayesian CAIPI: a probabilistic approach to explanatory and interactive machine learning. In: Nowaczyk, S., et al. (eds.) ECAI 2023, vol. 1947, pp. 285–301. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-50396-2_16

    Chapter  Google Scholar 

  11. Teso, S., Kersting, K.: Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2019, Honolulu, HI, USA, 27–28 January 2019, pp. 239–245. ACM (2019). https://doi.org/10.1145/3306618.3314293

  12. Yang, Z., Ishay, A., Lee, J.: Coupling large language models with logic programming for robust and general reasoning from text. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 5186–5219 (2023). https://aclanthology.org/2023.findings-acl.321.pdf

  13. Zecevic, M., Willig, M., Dhami, D.S., Kersting, K.: Causal Parrots: Large Language Models May Talk Causality But are Not Causal (2023). https://doi.org/10.48550/arXiv.2308.13067

Download references

Acknowledgments

Funded by BMBF Germany, Project hKI-Chemie (# 01IS21023A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Slany .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slany, E., Scheele, S., Schmid, U. (2024). Explanatory Interactive Machine Learning with Counterexamples from Constrained Large Language Models. In: Hotho, A., Rudolph, S. (eds) KI 2024: Advances in Artificial Intelligence. KI 2024. Lecture Notes in Computer Science(), vol 14992 . Springer, Cham. https://doi.org/10.1007/978-3-031-70893-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70893-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70892-3

  • Online ISBN: 978-3-031-70893-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics