Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intelligent Allocation Technologies for All-Scenario KDN Resources

  • Chapter
  • First Online:
Key Technologies for On-Demand 6G Network Services

Part of the book series: Wireless Networks ((WN))

  • 55 Accesses

Abstract

The intelligent allocation technology for all-scenario KDN resources focuses on intelligent resource allocation, aiming to address the issue of extracting and utilizing knowledge to allocate all-domain network resources. Building upon the network control knowledge space established in Chap. 5, a knowledge representation system for all-scenario requirements and all-domain resources is developed to facilitate knowledge sharing for resource allocation across various scenarios. Through all-scenario prediction, scheduling, and optimization mechanisms, intelligent, automated allocation, reservation, and distribution of all-domain resources are implemented to enhance the overall performance of 6G networks.

This chapter will introduce the research approach and methods of intelligent allocation technology for all-scenario KDN resources. Firstly, the basic mechanism of knowledge-defined resource allocation will be investigated to establish a research framework for the intelligent allocation technology of all-scenario KDN resources. Subsequently, research will be conducted on various tasks such as traffic awareness, knowledge acquisition, allocation strategy generation, and strategy validation within the context of knowledge-defined resource allocation. This will involve constructing an intelligent control loop to achieve real-time adaptation and dynamic fitting between network resources and intelligent allocation services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE. 103(1), 14–76 (2015)

    Article  Google Scholar 

  2. Tootoonchian, A., Ghobadi, M., Ganjali, Y.: OpenTM: traffic matrix estimator for OpenFlow networks. In: Proceedings of the 11th International Conference on Passive and Active Measurement, pp. 201–210 (2010)

    Chapter  Google Scholar 

  3. Huang, Q., Jin, X., Lee, P.P.C., Li, R., Tang, L., Chen, Y., Zhang, G.: SketchVisor: robust network measurement for software packet processing. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM ‘17), pp. 113–126 (2017)

    Chapter  Google Scholar 

  4. Chowdhury, S.R., Bari, M.F., Ahmed, R., Boutaba, R.: PayLess: a low cost network monitoring framework for software defined networks. In: IEEE Network Operations and Management Symposium (NOMS), pp. 1–9 (2014)

    Google Scholar 

  5. Rasley, J., Stephens, B., Dixon, C., Rozner, E., Felter, W., Agarwal, K., Carter, J., Fonseca, R.: Planck: millisecond-scale monitoring and control for commodity networks. In: Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ‘14), pp. 407–418 (2014)

    Chapter  Google Scholar 

  6. Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Madhyastha, H.V.: FlowSense: monitoring network utilization with zero measurement cost. In: Proceedings of the 14th International Conference on Passive and Active Network Measurement, pp. 31–41 (2013)

    Google Scholar 

  7. Benson, T., Anand, A., Akella, A., Zhang, M.: MicroTE: fine grained traffic engineering for data centers. In: Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies (CoNEXT’11), pp. 1–12 (2011)

    Google Scholar 

  8. Suh, J., Kwon, T.T., Dixon, C., Felter, W., Carter, J.: OpenSample: a low-latency, sampling-based measurement platform for commodity SDN. In: 2014 IEEE 34th International Conference on Distributed Computing Systems, pp. 228–237 (2014)

    Chapter  Google Scholar 

  9. Tan, L., Su, W., Zhang, W., Lv, J., Zhang, Z., Miao, J., Liu, X., Li, N.: In-band network telemetry: a survey. Comput. Netw. 186, 107763 (2021)

    Article  Google Scholar 

  10. Kim, C., Sivaraman, A., Katta, N., Bas, A., Advait, D., Lawrence, J.W.: In-band network telemetry via programmable dataplanes. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM ‘15), pp. 1–2 (2015)

    Google Scholar 

  11. Mizrahi, T., Brockners, F., Bhandari, S., Gafni, B., Spiegel, M.: In Situ Operations, Administration, and Maintenance (IOAM) Loopback and Active Flags, RFC 9322, Internet Engineering Task Force (IETF), November 2022. [Online]. Available: https://tools.ietf.org/html/rfc9322

  12. Fioccola, G., Capello, A., Cociglio, M., Castaldelli, L., Chen, M., Zheng, L., Mirsky, G., Mizrahi, T.: Alternate-Marking Method for Passive and Hybrid Performance Monitoring, RFC8321, Internet Engineering Task Force (IETF), Feb 2010. [Online]. Available: https://tools.ietf.org/html/rfc8321

  13. Pan, T., Song, E., Bian, Z., Lin, X., Peng, X., Zhang, J., Huang, T., Liu, B., Liu, Y.: INT-path: towards optimal path planning for in-band network-wide telemetry. In: IEEE INFOCOM 2019 – IEEE Conference on Computer Communications, pp. 487–495 (2019)

    Google Scholar 

  14. The P4.org applications working group. In-band network telemetry (INT) dataplane specification, version 2.1. P4.org, May 2020. [Online]. Available: https://p4.org/p4-spec/docs/INT_v2_1.pdf

  15. Huang, Q., Sun, H., Lee, P.P., Bai, W., Zhu, F., Bao, Y.: OmniMon: re-architecting network telemetry with resource efficiency and full accuracy. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM ‘20), pp. 404–421 (2020)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  18. Yang, Y., Lv, G., Hui, H., Li, P.: Survey on deep learning applicatons in software defined networking research. J. Softw. 31(7), 2184–2204 (2020)

    Google Scholar 

  19. Zhang, C., Wang, X., Li, F., He, Q., Huang, M.: Deep learning-based network application classification for SDN. Trans. Emerg. Telecommun. Technol. 29(5), e3302 (2018)

    Article  Google Scholar 

  20. Hu, N., Luan, F., Tian, X., Wu, C.: A novel SDN-based application-awareness mechanism by using deep learning. IEEE Access. 8, 160921–160930 (2020)

    Article  Google Scholar 

  21. Wang, P., Ye, F., Chen, X., Qian, Y.: Datanet: deep learning based encrypted network traffic classification in SDN home gateway. IEEE Access. 6, 55380–55391 (2018)

    Article  Google Scholar 

  22. Xu, J., Wang, J., Qi, Q., Sun, H., He, B.: IARA: an intelligent application-aware VNF for network resource allocation with deep learning. In: 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–3 (2018)

    Google Scholar 

  23. Xu, J., Wang, J., Qi, Q., Sun, H., He, B.: Deep neural networks for application awareness in SDN-based network. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2018)

    Google Scholar 

  24. Azzouni, A., Pujolle, G.: NeuTM: a neural network-based framework for traffic matrix prediction in SDN. In: Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 1–5 (2018)

    Google Scholar 

  25. Lazaris, A., Prasanna, V.K.: Deep learning models for aggregated network traffic prediction. In: 2019 15th International Conference on Network and Service Management (CNSM), pp. 1–5 (2019)

    Google Scholar 

  26. Liu, Z., Wang, Z., Yin, X., Shi, X., Guo, Y., Tian, Y.: Traffic matrix prediction based on deep learning for dynamic traffic engineering. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7 (2019)

    Google Scholar 

  27. Tao, H., Hou, C., Nie, F., Jiao, Y., Yi, D.: Effective discriminative feature selection with nontrivial solution. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 796–808 (2016)

    Article  MathSciNet  Google Scholar 

  28. Chen, Y., Wang, D., Zhou, P., Zhang, T.: Model compression and acceleration for deep neural networks: the principles, progress, and challenges. IEEE Signal Process. Mag. 35(1), 126–136 (2018)

    Article  Google Scholar 

  29. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE. 108(4), 485–532 (2020)

    Article  Google Scholar 

  30. Mishra, R., Gupta, H.P., Dutta, T.: A survey on deep neural network compression: Challenges, overview, and solutions (2020). Preprint, arXiv:2010.03954

    Google Scholar 

  31. Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehensive survey on model compression and acceleration. Artif. Intell. Rev. 53(7), 5113–5155 (2020)

    Article  Google Scholar 

  32. Zhang, K., Ying, H., Dai, N., Li, L., Peng, Y., Guo, K., Yu, H.: Compacting deep neural networks for internet of things: methods and applications. IEEE Internet of Things. 8(15), 11935–11959 (2021)

    Article  Google Scholar 

  33. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size (2016). Preprint, arXiv:1602.07360

    Google Scholar 

  34. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applications (2017). Preprint, arXiv:1704.04861

    Google Scholar 

  35. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Chapter  Google Scholar 

  36. Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), pp. 1314–1324

    Google Scholar 

  37. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)

    Chapter  Google Scholar 

  38. Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of European Conference on Computer Vision 2018 (ECCV), pp. 122–138 (2018)

    Chapter  Google Scholar 

  39. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)

    Chapter  Google Scholar 

  40. Zhou, G., Wu, J., Zhang, C., Zhou, Z.: Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016)

    Article  Google Scholar 

  41. WU, Z., King, S.: Investigating gated recurrent networks for speech synthesis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5140–5144 (2016)

    Chapter  Google Scholar 

  42. Westhuizen, J., Lasenby, J.: The unreasonable effectiveness of the forget gate (2018). Preprint, arXiv:1804.04849

    Google Scholar 

  43. Neil, D., Pfeiffer, M., Liu, S.: Phased LSTM: accelerating recurrent network training for long or event-based sequences. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 3889–3897 (2016)

    Google Scholar 

  44. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Conference of the International Speech Communication Association (INTERSPEECH 2014), pp. 338–342 (2014)

    Google Scholar 

  45. Kuchaiev, O., Ginsburg, B.: Factorization tricks for LSTM networks (2017). Preprint, arXiv:1703.10722

    Google Scholar 

  46. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., Dean, J.: Google’s neural machine translation system: Bridging the gap between human and machine translation. Preprint, arXiv:1609.08144. (2016)

    Google Scholar 

  47. Zhang, S., Wu, Y., Che, T., Lin, Z., Memisevic, R., Salakhutdinov, R.R., Bengio, Y.: Architectural complexity measures of recurrent neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 1830–1838 (2016)

    Google Scholar 

  48. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  49. Espig, M., Naraparaju, K.K., Schneider, J.: A note on tensor chain approximation. Comput. Vis. Sci. 15(6), 331–344 (2012)

    Article  MathSciNet  Google Scholar 

  50. Hou, M., Chaib-Draa, B.: Hierarchical tucker tensor regression: application to brain imaging data analysis. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1344–1348 (2015)

    Chapter  Google Scholar 

  51. Zhao, Q., Sugiyama, M., Yuan, L., Cichocki, A.: Learning efficient tensor representations with ring structured networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8608–8612 (2019)

    Chapter  Google Scholar 

  52. Huang, H., Ni, L., Wang, K., Wang, Y., Yu, H.: A highly parallel and energy efficient three-dimensional multilayer CMOS-RRAM accelerator for tensorized neural network. IEEE Trans. Nanotechnol. 17(4), 645–656 (2018)

    Article  Google Scholar 

  53. Su, J., Li, J., Bhattacharjee, B., Huang, F.: Tensorial neural networks: Generalization of neural networks and application to model compression (2018). Preprint, arXiv:1805.10352

    Google Scholar 

  54. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Preprint, arXiv: 1510.00149. (2015)

    Google Scholar 

  55. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), pp. 2285–2294 (2015)

    Google Scholar 

  56. Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural networks with binary weights during propagations. In: Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2 (NIPS’15), pp. 3123–3131 (2015)

    Google Scholar 

  57. Stock, P., Joulin, A., Gribonval, R., Graham, B., Jégou, H.: And the bit goes down: revisiting the quantizetion of neural networks (2019). Preprint, arXiv:1907.05686

    Google Scholar 

  58. Carreira-Perpiñán, M.Á., Idelbayev, Y.: Model compression as constrained optimization, with application to neural nets. Part II: Quantization (2017). Preprint, arXiv:1707.04319

    Google Scholar 

  59. Wang, Z., Lu, J., Tao, C., Zhou, J., Tian, Q.: Learning channel-wise interactions for binary convolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 568–577 (2019)

    Chapter  Google Scholar 

  60. Liu, C., Ding, W., Xia, X., Zhang, B., Gu, J., Liu, J., Ji, R., Doermann, D.: Circulant binary convolutional networks: Enhancing the performance of 1-bit DCNNs with circulant back propagation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2686–2694 (2019)

    Chapter  Google Scholar 

  61. Zhu, S., Dong, X., Su, H.: Binary ensemble neural network: more bits per network or more networks per bit? In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4918–4927 (2019)

    Chapter  Google Scholar 

  62. Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J.: Two-step quantization for low-bit neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4376–4384 (2018)

    Chapter  Google Scholar 

  63. Luo, J., Wu, J.: An entropy-based pruning method for CNN compression (2017). Preprint, arXiv:1706.05791

    Google Scholar 

  64. Yang, T., Chen, Y., Sze, V.: Designing energy-efficient convolutional neural networks using energy-aware pruning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6071–6079 (2017)

    Chapter  Google Scholar 

  65. Hu, Y., Sun, S., Li, J., Wang, X., Gu, Q.: A novel channel pruning method for deep neural network compression (2018). Preprint, arXiv:1805.11394

    Google Scholar 

  66. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1398–1406 (2017)

    Chapter  Google Scholar 

  67. Anwar, S., Sung, W.: Coarse pruning of convolutional neural networks with random masks. In: Proceedings of the 2017 International Conference on Learning Representations (ICLR), pp. 134–145 (2017)

    Google Scholar 

  68. Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H.P.: Pruning filters for efficient ConvNets, poster presented at the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  69. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference (2016). Preprint, arXiv:1611.06440

    Google Scholar 

  70. Hu, H., Peng, R., Tai, Y., Tang, C.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures (2016). Preprint, arXiv:1607.03250

    Google Scholar 

  71. Wu, D., Li, Z., Wang, J., Zheng, Y., Li, M., Huang, Q.: Vision and challenges for knowledge centric networking. IEEE Wirel. Commun. 26(4), 117–123 (2019)

    Article  Google Scholar 

  72. Geng, C., Huang, S., Chen, S.: Recent advances in open set recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (Early Access). 1–1 (2020)

    Google Scholar 

  73. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10649–10657 (2019)

    Chapter  Google Scholar 

  74. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization. Preprint, arXiv:1807.05960. (2018)

    Google Scholar 

  75. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 4077–4087 (2017)

    Google Scholar 

  76. Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1685–1694 (2019)

    Chapter  Google Scholar 

  77. Alfassy, A., Karlinsky, L., Aides, A., Shtok, J., Harary, S., Feris, R., Giryes, R., Bronstein, A.M.: LaSO: label-set operations networks for multi label few-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6541–6550 (2019)

    Chapter  Google Scholar 

  78. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3037–3046 (2017)

    Chapter  Google Scholar 

  79. Schwartz, E., Karlinsky, L., Shtok, J., Harary, S., Marder, M., Kumar, A., Feris, R., Giryes, R., Bronstein, A.: Delta-encoder: an effective sample synthesis method for few-shot object recognition. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS), pp. 2850–2860 (2018)

    Google Scholar 

  80. Chen, Z., Fu, Y., Zhang, Y., Jiang, Y., Xue, X., Sigal, L.: Multi-level semantic feature augmentation for one-shot learning. IEEE Trans. Image Process. 28(9), 4594–4605 (2019)

    Article  MathSciNet  Google Scholar 

  81. Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4080–4088 (2018)

    Chapter  Google Scholar 

  82. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 3637–3645 (2016)

    Google Scholar 

  83. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1199–1208 (2018)

    Chapter  Google Scholar 

  84. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning – Volume 70 (ICML’17), pp. 2554–2563 (2017)

    Google Scholar 

  85. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning – Volume 70 (ICML’17), pp. 1126–1135 (2017)

    Google Scholar 

  86. Wang, Y., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9924–9933 (2019)

    Chapter  Google Scholar 

  87. Yoon, S.W., Seo, J., Moon, J.: Tapnet: neural network augmented with task-adaptive projection for few-shot learning. In: Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 7115–7123 (2019)

    Google Scholar 

  88. Fiandrino, C., Zhang, C., Patras, P., Banchs, A., Widmer, J.: A machine-learning-based framework for optimizing the operation of future networks. IEEE Commun. Mag. 58(6), 20–25 (2020)

    Article  Google Scholar 

  89. Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y., Kim, D.I.: Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor. 21(4), 3133–3174 (2019)

    Article  Google Scholar 

  90. Stampa, G., Arias, M., Sanchez-Charles, D., Muntes-Mulero, V., Cabellos, A.: A deep-reinforcement learning approach for software-defined networking routing optimization. Preprint, arXiv:1709.07080. (2017)

    Google Scholar 

  91. Xu, Z., Tang, J., Meng, J., Zhang, W., Wang, Y., Liu, C., Yang, D.: Experience-driven networking: a deep reinforcement learning based approach. IEEE INFOCOM 2018 – IEEE Conference on Computer Communications, 1871–1879 (2018)

    Google Scholar 

  92. Xu, Q., Zhang, Y., Wu, K., Wang, J., Lu, K.: Evaluating and boosting reinforcement learning for intra domain routing. In: 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 265–273 (2019)

    Chapter  Google Scholar 

  93. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A., Leung, V.C.M.: Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun. Mag. 55(8), 138–145 (2017)

    Article  Google Scholar 

  94. Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5G: survey and challenges. IEEE Commun. Mag. 55(5), 94–100 (2017)

    Article  Google Scholar 

  95. Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., Wang, L.: Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 14(2), 44–52 (2019)

    Article  Google Scholar 

  96. Li, R., Zhao, Z., Sun, Q., I, C., Yang, C., Chen, X., Zhao, M., Zhang, H.: Deep reinforcement learning for resource management in network slicing. IEEE Access. 6, 74429–74441 (2018)

    Article  Google Scholar 

  97. Sun, G., Gebrekidan, Z.T., Boateng, G.O., Ayepah-Mensah, D., Jiang, W.: Dynamic reservation and deep reinforcement learning based autonomous resource slicing for virtualized radio access networks. IEEE Access. 7, 45758–45772 (2019)

    Article  Google Scholar 

  98. Abiko, Y., Mochizuki, D., Saito, T., Ikeda, D., Mizuno, T., Mineno, H.: Proposal of allocating radio resources to multiple slices in 5G using deep reinforcement learning. In: 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 1–2 (2019)

    Google Scholar 

  99. Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H.: Radio resource allocation method for network slicing using deep reinforcement learning. In: 2020 International Conference on Information Networking (ICOIN), pp. 420–425 (2020)

    Chapter  Google Scholar 

  100. Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H.: Flexible resource block allocation to multiple slices for radio access network slicing using deep reinforcement learning. IEEE Access. 8, 68183–68198 (2020)

    Article  Google Scholar 

  101. Sciancalepore, V., Costa-Perez, X., Banchs, A.: RL-NSB: reinforcement learning based 5G network slice broker. IEEE/ACM Trans. Netw. 27(4), 1543–1557 (2019)

    Article  Google Scholar 

  102. Huynh, N.V., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E.: Optimal and fast real-time resource slicing with deep dueling neural networks. IEEE J Sel Areas Commun. 37(6), 1455–1470 (2019)

    Article  Google Scholar 

  103. Guan, W., Zhang, H., Leung, V.C.: Slice reconfiguration based on demand prediction with dueling deep reinforcement learning. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 (2020)

    Google Scholar 

  104. Guan, W., Zhang, H., Leung, V.C.: Customized slicing for 6G: enforcing artificial intelligence on resource management. IEEE Netw. 35(5), 264–271 (2021)

    Article  Google Scholar 

  105. Geng, N., Lan, T., Aggarwal, V., Yang, Y., Xu, M.: A multi-agent reinforcement learning perspective on distributed traffic engineering. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–11 (2020)

    Google Scholar 

  106. You, X., Li, X., Xu, Y., Feng, H., Zhao, J., Yan, H.: Toward packet routing with fully distributed multi-agent deep reinforcement learning. IEEE Trans Syst Man Cybern Syst. 52(2), 855–868 (2020)

    Article  Google Scholar 

  107. Qiu, X., Zhang, W., Chen, W., Zheng, Z.: Distributed and collective deep reinforcement learning for computation offloading: a practical perspective. IEEE Trans Parallel Distrib Syst. 32(5), 1085–1101 (2021)

    Article  Google Scholar 

  108. Khan, A.A., Adve, R.S.: Centralized and distributed deep reinforcement learning methods for downlink sum-rate optimization. IEEE Trans. Wirel. Commun. 19(12), 8410–8426 (2020)

    Article  Google Scholar 

  109. Liao, X., Hu, X., Liu, Z., Ma, S., Xu, L., Li, X., Wang, W., Ghannouchi, F.M.: Distributed intelligence: a verification for multi-agent DRL based multibeam satellite resource allocation. IEEE Commun. Lett. 24(12), 2785–2789 (2020)

    Article  Google Scholar 

  110. Liu, C., Xu, M., Geng, N., Zhang, X.: A survey on machine learning based routing algorithms. J Comput Res Dev. 57(04), 671–687 (2020)

    Google Scholar 

  111. Qadir, J., Hasan, O.: Applying formal methods to networking: theory, techniques, and applications. IEEE Commun Surv Tutor. 17(1), 256–291 (2015)

    Article  Google Scholar 

  112. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  113. Al-Shaer, E., Al-Haj, S.: FlowChecker: configuration analysis and verification of federated OpenFlow infrastructures. In: Proceedings of the 3rd ACM Workshop on Assurable Usable Security Configuration (SafeConfig’10), pp. 37–44 (2010)

    Chapter  Google Scholar 

  114. Canini, M., Venzano, D., Perešíni, P., Kostić, D., Rexford, J.: A NICE way to test openflow applications. In: Proceedings of 9th USENIX Symposium on Networked System Design and Implementation (NSDI), pp. 127–140 (2012)

    Google Scholar 

  115. Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers. In: 2013 Formal Methods in Computer-Aided Design, pp. 145–148 (2013)

    Chapter  Google Scholar 

  116. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM. 5(7), 394–397 (1962)

    Article  MathSciNet  Google Scholar 

  117. Reitblatt, M., Canini, M., Guha, A., Foster, N.: FatTire: declarative fault tolerance for software defined networks. In: Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking (HotSDN ‘13), pp. 109–114 (2013)

    Chapter  Google Scholar 

  118. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ‘13), pp. 483–494 (2013)

    Chapter  Google Scholar 

  119. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira, M., Valadarsky, A.: VeriCon: towards verifying controller programs in software-defined networks. ACM SIGPLAN Not. 49(6), 282–293 (2014)

    Article  Google Scholar 

  120. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun. ACM. 56(2), 82–90 (2013)

    Article  Google Scholar 

  121. Dobrescu, M., Argyraki, K.: Software dataplane verification. In: Proceedings of 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 101–114 (2014)

    Google Scholar 

  122. Stoenescu, R., Popovici, M., Negreanu, L., Raiciu, C.: SymNet: scalable symbolic execution for modern networks. In: Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ‘16), pp. 314–327 (2016)

    Chapter  Google Scholar 

  123. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Commun. ACM. 52(8), 76–82 (2009)

    Article  Google Scholar 

  124. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: Debugging the data plane with anteater. In: Proceedings of the ACM SIGCOMM 2011 conference (SIGCOMM ‘11), pp. 290–301 (2011)

    Chapter  Google Scholar 

  125. Zhang, S., Malik, S.: SAT based verification of network data planes. In: Automated Technology for Verification and Analysis, vol. 8172, pp. 496–505 (2013)

    Chapter  Google Scholar 

  126. Son, S., Shin, S., Yegneswaran, V., Porras, P., Gu, G.: Model checking invariant security properties in OpenFlow. In: 2013 IEEE International Conference on Communications (ICC), pp. 1974–1979 (2013)

    Chapter  Google Scholar 

  127. Girish, L., Rao, S.K.N.: Mathematical tools and methods for analysis of SDN: A comprehensive survey. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 718–724 (2016)

    Chapter  Google Scholar 

  128. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: verifying network-wide invariants in real time. ACM SIGCOMM Comput. Commun. Rev. 42(4), 467–472 (2012)

    Article  Google Scholar 

  129. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real time network policy checking using header space analysis. In: Proceedings of 10th USENIX Symposium on Networked Systems Design and Implementation, pp. 99–111 (2013)

    Google Scholar 

  130. Yang, H., Lam, S.S.: Real-time verification of network properties using atomic predicates. IEEE/ACM Trans. Networking. 24(2), 887–900 (2016)

    Article  Google Scholar 

  131. Plotkin, G.D., Bjørner, N., Lopes, N., Rybalchenko, A., Varghese, G.: Scaling network verification using symmetry and surgery. ACM SIGPLAN Not. 51(1), 69–83 (2016)

    Article  Google Scholar 

  132. Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., Zhang, H., Wang, Q.: A survey on network verification and testing with formal methods: approaches and challenges. IEEE Commun Surv Tutor. 21(1), 940–969 (2019)

    Article  Google Scholar 

  133. Skowyra, R.W., Lapets, A., Bestavros, A., Kfoury, A.: Verifiably-safe software-defined networks for CPS. In: Proceedings of the 2nd ACM International Conference on High Confidence Networked Systems (HiCoNS ‘13), pp. 101–110 (2013)

    Chapter  Google Scholar 

  134. Skowyra, R., Lapets, A., Bestavros, A., Kfoury, A.: A verification platform for SDN-enabled applications. In: 2014 IEEE International Conference on Cloud Engineering, pp. 337–342 (2014)

    Chapter  Google Scholar 

  135. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. ACM SIGPLAN Not. 48(6), 483–494 (2013)

    Article  Google Scholar 

  136. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML (NetAI’19), pp. 83–89 (2019)

    Chapter  Google Scholar 

  137. Zheng, Y., Liu, Z., You, X., Xu, Y., Jiang, J.: Demystifying deep learning in networking. In: Proceedings of the 2nd Asia-Pacific Workshop on Networking (APNet ‘18), pp. 1–7 (2018)

    Google Scholar 

  138. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3319–3327 (2017)

    Chapter  Google Scholar 

  139. Toneva, M., Wehbe, L.: Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). In: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS), pp. 14928–14938 (2019)

    Google Scholar 

  140. Meng, Z., Wang, M., Bai, J., Xu, M., Mao, H., Hu, H.: Interpreting deep learning-based networking systems. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM ‘20), pp. 154–171 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Liao .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, J., He, B., Wang, J., Wang, J., Qi, Q. (2024). Intelligent Allocation Technologies for All-Scenario KDN Resources. In: Key Technologies for On-Demand 6G Network Services. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-70606-6_7

Download citation

Publish with us

Policies and ethics