Abstract
The intelligent allocation technology for all-scenario KDN resources focuses on intelligent resource allocation, aiming to address the issue of extracting and utilizing knowledge to allocate all-domain network resources. Building upon the network control knowledge space established in Chap. 5, a knowledge representation system for all-scenario requirements and all-domain resources is developed to facilitate knowledge sharing for resource allocation across various scenarios. Through all-scenario prediction, scheduling, and optimization mechanisms, intelligent, automated allocation, reservation, and distribution of all-domain resources are implemented to enhance the overall performance of 6G networks.
This chapter will introduce the research approach and methods of intelligent allocation technology for all-scenario KDN resources. Firstly, the basic mechanism of knowledge-defined resource allocation will be investigated to establish a research framework for the intelligent allocation technology of all-scenario KDN resources. Subsequently, research will be conducted on various tasks such as traffic awareness, knowledge acquisition, allocation strategy generation, and strategy validation within the context of knowledge-defined resource allocation. This will involve constructing an intelligent control loop to achieve real-time adaptation and dynamic fitting between network resources and intelligent allocation services.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE. 103(1), 14–76 (2015)
Tootoonchian, A., Ghobadi, M., Ganjali, Y.: OpenTM: traffic matrix estimator for OpenFlow networks. In: Proceedings of the 11th International Conference on Passive and Active Measurement, pp. 201–210 (2010)
Huang, Q., Jin, X., Lee, P.P.C., Li, R., Tang, L., Chen, Y., Zhang, G.: SketchVisor: robust network measurement for software packet processing. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM ‘17), pp. 113–126 (2017)
Chowdhury, S.R., Bari, M.F., Ahmed, R., Boutaba, R.: PayLess: a low cost network monitoring framework for software defined networks. In: IEEE Network Operations and Management Symposium (NOMS), pp. 1–9 (2014)
Rasley, J., Stephens, B., Dixon, C., Rozner, E., Felter, W., Agarwal, K., Carter, J., Fonseca, R.: Planck: millisecond-scale monitoring and control for commodity networks. In: Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ‘14), pp. 407–418 (2014)
Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Madhyastha, H.V.: FlowSense: monitoring network utilization with zero measurement cost. In: Proceedings of the 14th International Conference on Passive and Active Network Measurement, pp. 31–41 (2013)
Benson, T., Anand, A., Akella, A., Zhang, M.: MicroTE: fine grained traffic engineering for data centers. In: Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies (CoNEXT’11), pp. 1–12 (2011)
Suh, J., Kwon, T.T., Dixon, C., Felter, W., Carter, J.: OpenSample: a low-latency, sampling-based measurement platform for commodity SDN. In: 2014 IEEE 34th International Conference on Distributed Computing Systems, pp. 228–237 (2014)
Tan, L., Su, W., Zhang, W., Lv, J., Zhang, Z., Miao, J., Liu, X., Li, N.: In-band network telemetry: a survey. Comput. Netw. 186, 107763 (2021)
Kim, C., Sivaraman, A., Katta, N., Bas, A., Advait, D., Lawrence, J.W.: In-band network telemetry via programmable dataplanes. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM ‘15), pp. 1–2 (2015)
Mizrahi, T., Brockners, F., Bhandari, S., Gafni, B., Spiegel, M.: In Situ Operations, Administration, and Maintenance (IOAM) Loopback and Active Flags, RFC 9322, Internet Engineering Task Force (IETF), November 2022. [Online]. Available: https://tools.ietf.org/html/rfc9322
Fioccola, G., Capello, A., Cociglio, M., Castaldelli, L., Chen, M., Zheng, L., Mirsky, G., Mizrahi, T.: Alternate-Marking Method for Passive and Hybrid Performance Monitoring, RFC8321, Internet Engineering Task Force (IETF), Feb 2010. [Online]. Available: https://tools.ietf.org/html/rfc8321
Pan, T., Song, E., Bian, Z., Lin, X., Peng, X., Zhang, J., Huang, T., Liu, B., Liu, Y.: INT-path: towards optimal path planning for in-band network-wide telemetry. In: IEEE INFOCOM 2019 – IEEE Conference on Computer Communications, pp. 487–495 (2019)
The P4.org applications working group. In-band network telemetry (INT) dataplane specification, version 2.1. P4.org, May 2020. [Online]. Available: https://p4.org/p4-spec/docs/INT_v2_1.pdf
Huang, Q., Sun, H., Lee, P.P., Bai, W., Zhu, F., Bao, Y.: OmniMon: re-architecting network telemetry with resource efficiency and full accuracy. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM ‘20), pp. 404–421 (2020)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Yang, Y., Lv, G., Hui, H., Li, P.: Survey on deep learning applicatons in software defined networking research. J. Softw. 31(7), 2184–2204 (2020)
Zhang, C., Wang, X., Li, F., He, Q., Huang, M.: Deep learning-based network application classification for SDN. Trans. Emerg. Telecommun. Technol. 29(5), e3302 (2018)
Hu, N., Luan, F., Tian, X., Wu, C.: A novel SDN-based application-awareness mechanism by using deep learning. IEEE Access. 8, 160921–160930 (2020)
Wang, P., Ye, F., Chen, X., Qian, Y.: Datanet: deep learning based encrypted network traffic classification in SDN home gateway. IEEE Access. 6, 55380–55391 (2018)
Xu, J., Wang, J., Qi, Q., Sun, H., He, B.: IARA: an intelligent application-aware VNF for network resource allocation with deep learning. In: 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–3 (2018)
Xu, J., Wang, J., Qi, Q., Sun, H., He, B.: Deep neural networks for application awareness in SDN-based network. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2018)
Azzouni, A., Pujolle, G.: NeuTM: a neural network-based framework for traffic matrix prediction in SDN. In: Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 1–5 (2018)
Lazaris, A., Prasanna, V.K.: Deep learning models for aggregated network traffic prediction. In: 2019 15th International Conference on Network and Service Management (CNSM), pp. 1–5 (2019)
Liu, Z., Wang, Z., Yin, X., Shi, X., Guo, Y., Tian, Y.: Traffic matrix prediction based on deep learning for dynamic traffic engineering. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7 (2019)
Tao, H., Hou, C., Nie, F., Jiao, Y., Yi, D.: Effective discriminative feature selection with nontrivial solution. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 796–808 (2016)
Chen, Y., Wang, D., Zhou, P., Zhang, T.: Model compression and acceleration for deep neural networks: the principles, progress, and challenges. IEEE Signal Process. Mag. 35(1), 126–136 (2018)
Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE. 108(4), 485–532 (2020)
Mishra, R., Gupta, H.P., Dutta, T.: A survey on deep neural network compression: Challenges, overview, and solutions (2020). Preprint, arXiv:2010.03954
Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehensive survey on model compression and acceleration. Artif. Intell. Rev. 53(7), 5113–5155 (2020)
Zhang, K., Ying, H., Dai, N., Li, L., Peng, Y., Guo, K., Yu, H.: Compacting deep neural networks for internet of things: methods and applications. IEEE Internet of Things. 8(15), 11935–11959 (2021)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size (2016). Preprint, arXiv:1602.07360
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applications (2017). Preprint, arXiv:1704.04861
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), pp. 1314–1324
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)
Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of European Conference on Computer Vision 2018 (ECCV), pp. 122–138 (2018)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)
Zhou, G., Wu, J., Zhang, C., Zhou, Z.: Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016)
WU, Z., King, S.: Investigating gated recurrent networks for speech synthesis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5140–5144 (2016)
Westhuizen, J., Lasenby, J.: The unreasonable effectiveness of the forget gate (2018). Preprint, arXiv:1804.04849
Neil, D., Pfeiffer, M., Liu, S.: Phased LSTM: accelerating recurrent network training for long or event-based sequences. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 3889–3897 (2016)
Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Conference of the International Speech Communication Association (INTERSPEECH 2014), pp. 338–342 (2014)
Kuchaiev, O., Ginsburg, B.: Factorization tricks for LSTM networks (2017). Preprint, arXiv:1703.10722
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., Dean, J.: Google’s neural machine translation system: Bridging the gap between human and machine translation. Preprint, arXiv:1609.08144. (2016)
Zhang, S., Wu, Y., Che, T., Lin, Z., Memisevic, R., Salakhutdinov, R.R., Bengio, Y.: Architectural complexity measures of recurrent neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 1830–1838 (2016)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Espig, M., Naraparaju, K.K., Schneider, J.: A note on tensor chain approximation. Comput. Vis. Sci. 15(6), 331–344 (2012)
Hou, M., Chaib-Draa, B.: Hierarchical tucker tensor regression: application to brain imaging data analysis. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1344–1348 (2015)
Zhao, Q., Sugiyama, M., Yuan, L., Cichocki, A.: Learning efficient tensor representations with ring structured networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8608–8612 (2019)
Huang, H., Ni, L., Wang, K., Wang, Y., Yu, H.: A highly parallel and energy efficient three-dimensional multilayer CMOS-RRAM accelerator for tensorized neural network. IEEE Trans. Nanotechnol. 17(4), 645–656 (2018)
Su, J., Li, J., Bhattacharjee, B., Huang, F.: Tensorial neural networks: Generalization of neural networks and application to model compression (2018). Preprint, arXiv:1805.10352
Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Preprint, arXiv: 1510.00149. (2015)
Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), pp. 2285–2294 (2015)
Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural networks with binary weights during propagations. In: Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2 (NIPS’15), pp. 3123–3131 (2015)
Stock, P., Joulin, A., Gribonval, R., Graham, B., Jégou, H.: And the bit goes down: revisiting the quantizetion of neural networks (2019). Preprint, arXiv:1907.05686
Carreira-Perpiñán, M.Á., Idelbayev, Y.: Model compression as constrained optimization, with application to neural nets. Part II: Quantization (2017). Preprint, arXiv:1707.04319
Wang, Z., Lu, J., Tao, C., Zhou, J., Tian, Q.: Learning channel-wise interactions for binary convolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 568–577 (2019)
Liu, C., Ding, W., Xia, X., Zhang, B., Gu, J., Liu, J., Ji, R., Doermann, D.: Circulant binary convolutional networks: Enhancing the performance of 1-bit DCNNs with circulant back propagation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2686–2694 (2019)
Zhu, S., Dong, X., Su, H.: Binary ensemble neural network: more bits per network or more networks per bit? In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4918–4927 (2019)
Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J.: Two-step quantization for low-bit neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4376–4384 (2018)
Luo, J., Wu, J.: An entropy-based pruning method for CNN compression (2017). Preprint, arXiv:1706.05791
Yang, T., Chen, Y., Sze, V.: Designing energy-efficient convolutional neural networks using energy-aware pruning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6071–6079 (2017)
Hu, Y., Sun, S., Li, J., Wang, X., Gu, Q.: A novel channel pruning method for deep neural network compression (2018). Preprint, arXiv:1805.11394
He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1398–1406 (2017)
Anwar, S., Sung, W.: Coarse pruning of convolutional neural networks with random masks. In: Proceedings of the 2017 International Conference on Learning Representations (ICLR), pp. 134–145 (2017)
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H.P.: Pruning filters for efficient ConvNets, poster presented at the International Conference on Learning Representations (ICLR) (2017)
Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference (2016). Preprint, arXiv:1611.06440
Hu, H., Peng, R., Tai, Y., Tang, C.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures (2016). Preprint, arXiv:1607.03250
Wu, D., Li, Z., Wang, J., Zheng, Y., Li, M., Huang, Q.: Vision and challenges for knowledge centric networking. IEEE Wirel. Commun. 26(4), 117–123 (2019)
Geng, C., Huang, S., Chen, S.: Recent advances in open set recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (Early Access). 1–1 (2020)
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10649–10657 (2019)
Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization. Preprint, arXiv:1807.05960. (2018)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 4077–4087 (2017)
Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1685–1694 (2019)
Alfassy, A., Karlinsky, L., Aides, A., Shtok, J., Harary, S., Feris, R., Giryes, R., Bronstein, A.M.: LaSO: label-set operations networks for multi label few-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6541–6550 (2019)
Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3037–3046 (2017)
Schwartz, E., Karlinsky, L., Shtok, J., Harary, S., Marder, M., Kumar, A., Feris, R., Giryes, R., Bronstein, A.: Delta-encoder: an effective sample synthesis method for few-shot object recognition. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS), pp. 2850–2860 (2018)
Chen, Z., Fu, Y., Zhang, Y., Jiang, Y., Xue, X., Sigal, L.: Multi-level semantic feature augmentation for one-shot learning. IEEE Trans. Image Process. 28(9), 4594–4605 (2019)
Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4080–4088 (2018)
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), pp. 3637–3645 (2016)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1199–1208 (2018)
Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning – Volume 70 (ICML’17), pp. 2554–2563 (2017)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning – Volume 70 (ICML’17), pp. 1126–1135 (2017)
Wang, Y., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9924–9933 (2019)
Yoon, S.W., Seo, J., Moon, J.: Tapnet: neural network augmented with task-adaptive projection for few-shot learning. In: Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 7115–7123 (2019)
Fiandrino, C., Zhang, C., Patras, P., Banchs, A., Widmer, J.: A machine-learning-based framework for optimizing the operation of future networks. IEEE Commun. Mag. 58(6), 20–25 (2020)
Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y., Kim, D.I.: Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor. 21(4), 3133–3174 (2019)
Stampa, G., Arias, M., Sanchez-Charles, D., Muntes-Mulero, V., Cabellos, A.: A deep-reinforcement learning approach for software-defined networking routing optimization. Preprint, arXiv:1709.07080. (2017)
Xu, Z., Tang, J., Meng, J., Zhang, W., Wang, Y., Liu, C., Yang, D.: Experience-driven networking: a deep reinforcement learning based approach. IEEE INFOCOM 2018 – IEEE Conference on Computer Communications, 1871–1879 (2018)
Xu, Q., Zhang, Y., Wu, K., Wang, J., Lu, K.: Evaluating and boosting reinforcement learning for intra domain routing. In: 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 265–273 (2019)
Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A., Leung, V.C.M.: Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun. Mag. 55(8), 138–145 (2017)
Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5G: survey and challenges. IEEE Commun. Mag. 55(5), 94–100 (2017)
Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., Wang, L.: Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 14(2), 44–52 (2019)
Li, R., Zhao, Z., Sun, Q., I, C., Yang, C., Chen, X., Zhao, M., Zhang, H.: Deep reinforcement learning for resource management in network slicing. IEEE Access. 6, 74429–74441 (2018)
Sun, G., Gebrekidan, Z.T., Boateng, G.O., Ayepah-Mensah, D., Jiang, W.: Dynamic reservation and deep reinforcement learning based autonomous resource slicing for virtualized radio access networks. IEEE Access. 7, 45758–45772 (2019)
Abiko, Y., Mochizuki, D., Saito, T., Ikeda, D., Mizuno, T., Mineno, H.: Proposal of allocating radio resources to multiple slices in 5G using deep reinforcement learning. In: 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 1–2 (2019)
Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H.: Radio resource allocation method for network slicing using deep reinforcement learning. In: 2020 International Conference on Information Networking (ICOIN), pp. 420–425 (2020)
Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H.: Flexible resource block allocation to multiple slices for radio access network slicing using deep reinforcement learning. IEEE Access. 8, 68183–68198 (2020)
Sciancalepore, V., Costa-Perez, X., Banchs, A.: RL-NSB: reinforcement learning based 5G network slice broker. IEEE/ACM Trans. Netw. 27(4), 1543–1557 (2019)
Huynh, N.V., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E.: Optimal and fast real-time resource slicing with deep dueling neural networks. IEEE J Sel Areas Commun. 37(6), 1455–1470 (2019)
Guan, W., Zhang, H., Leung, V.C.: Slice reconfiguration based on demand prediction with dueling deep reinforcement learning. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 (2020)
Guan, W., Zhang, H., Leung, V.C.: Customized slicing for 6G: enforcing artificial intelligence on resource management. IEEE Netw. 35(5), 264–271 (2021)
Geng, N., Lan, T., Aggarwal, V., Yang, Y., Xu, M.: A multi-agent reinforcement learning perspective on distributed traffic engineering. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–11 (2020)
You, X., Li, X., Xu, Y., Feng, H., Zhao, J., Yan, H.: Toward packet routing with fully distributed multi-agent deep reinforcement learning. IEEE Trans Syst Man Cybern Syst. 52(2), 855–868 (2020)
Qiu, X., Zhang, W., Chen, W., Zheng, Z.: Distributed and collective deep reinforcement learning for computation offloading: a practical perspective. IEEE Trans Parallel Distrib Syst. 32(5), 1085–1101 (2021)
Khan, A.A., Adve, R.S.: Centralized and distributed deep reinforcement learning methods for downlink sum-rate optimization. IEEE Trans. Wirel. Commun. 19(12), 8410–8426 (2020)
Liao, X., Hu, X., Liu, Z., Ma, S., Xu, L., Li, X., Wang, W., Ghannouchi, F.M.: Distributed intelligence: a verification for multi-agent DRL based multibeam satellite resource allocation. IEEE Commun. Lett. 24(12), 2785–2789 (2020)
Liu, C., Xu, M., Geng, N., Zhang, X.: A survey on machine learning based routing algorithms. J Comput Res Dev. 57(04), 671–687 (2020)
Qadir, J., Hasan, O.: Applying formal methods to networking: theory, techniques, and applications. IEEE Commun Surv Tutor. 17(1), 256–291 (2015)
Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
Al-Shaer, E., Al-Haj, S.: FlowChecker: configuration analysis and verification of federated OpenFlow infrastructures. In: Proceedings of the 3rd ACM Workshop on Assurable Usable Security Configuration (SafeConfig’10), pp. 37–44 (2010)
Canini, M., Venzano, D., Perešíni, P., Kostić, D., Rexford, J.: A NICE way to test openflow applications. In: Proceedings of 9th USENIX Symposium on Networked System Design and Implementation (NSDI), pp. 127–140 (2012)
Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers. In: 2013 Formal Methods in Computer-Aided Design, pp. 145–148 (2013)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM. 5(7), 394–397 (1962)
Reitblatt, M., Canini, M., Guha, A., Foster, N.: FatTire: declarative fault tolerance for software defined networks. In: Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking (HotSDN ‘13), pp. 109–114 (2013)
Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ‘13), pp. 483–494 (2013)
Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira, M., Valadarsky, A.: VeriCon: towards verifying controller programs in software-defined networks. ACM SIGPLAN Not. 49(6), 282–293 (2014)
Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun. ACM. 56(2), 82–90 (2013)
Dobrescu, M., Argyraki, K.: Software dataplane verification. In: Proceedings of 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 101–114 (2014)
Stoenescu, R., Popovici, M., Negreanu, L., Raiciu, C.: SymNet: scalable symbolic execution for modern networks. In: Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ‘16), pp. 314–327 (2016)
Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Commun. ACM. 52(8), 76–82 (2009)
Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: Debugging the data plane with anteater. In: Proceedings of the ACM SIGCOMM 2011 conference (SIGCOMM ‘11), pp. 290–301 (2011)
Zhang, S., Malik, S.: SAT based verification of network data planes. In: Automated Technology for Verification and Analysis, vol. 8172, pp. 496–505 (2013)
Son, S., Shin, S., Yegneswaran, V., Porras, P., Gu, G.: Model checking invariant security properties in OpenFlow. In: 2013 IEEE International Conference on Communications (ICC), pp. 1974–1979 (2013)
Girish, L., Rao, S.K.N.: Mathematical tools and methods for analysis of SDN: A comprehensive survey. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 718–724 (2016)
Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: verifying network-wide invariants in real time. ACM SIGCOMM Comput. Commun. Rev. 42(4), 467–472 (2012)
Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real time network policy checking using header space analysis. In: Proceedings of 10th USENIX Symposium on Networked Systems Design and Implementation, pp. 99–111 (2013)
Yang, H., Lam, S.S.: Real-time verification of network properties using atomic predicates. IEEE/ACM Trans. Networking. 24(2), 887–900 (2016)
Plotkin, G.D., Bjørner, N., Lopes, N., Rybalchenko, A., Varghese, G.: Scaling network verification using symmetry and surgery. ACM SIGPLAN Not. 51(1), 69–83 (2016)
Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., Zhang, H., Wang, Q.: A survey on network verification and testing with formal methods: approaches and challenges. IEEE Commun Surv Tutor. 21(1), 940–969 (2019)
Skowyra, R.W., Lapets, A., Bestavros, A., Kfoury, A.: Verifiably-safe software-defined networks for CPS. In: Proceedings of the 2nd ACM International Conference on High Confidence Networked Systems (HiCoNS ‘13), pp. 101–110 (2013)
Skowyra, R., Lapets, A., Bestavros, A., Kfoury, A.: A verification platform for SDN-enabled applications. In: 2014 IEEE International Conference on Cloud Engineering, pp. 337–342 (2014)
Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. ACM SIGPLAN Not. 48(6), 483–494 (2013)
Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML (NetAI’19), pp. 83–89 (2019)
Zheng, Y., Liu, Z., You, X., Xu, Y., Jiang, J.: Demystifying deep learning in networking. In: Proceedings of the 2nd Asia-Pacific Workshop on Networking (APNet ‘18), pp. 1–7 (2018)
Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3319–3327 (2017)
Toneva, M., Wehbe, L.: Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). In: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS), pp. 14928–14938 (2019)
Meng, Z., Wang, M., Bai, J., Xu, M., Mao, H., Hu, H.: Interpreting deep learning-based networking systems. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM ‘20), pp. 154–171 (2020)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Liao, J., He, B., Wang, J., Wang, J., Qi, Q. (2024). Intelligent Allocation Technologies for All-Scenario KDN Resources. In: Key Technologies for On-Demand 6G Network Services. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-70606-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-70606-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70605-9
Online ISBN: 978-3-031-70606-6
eBook Packages: Professional and Applied ComputingProfessional and Applied Computing (R0)