Abstract
Optical Character Recognition (OCR) continues to face accuracy challenges that impact subsequent applications. To address these errors, we explore the utility of OCR confidence scores for enhancing post-OCR error detection. Our study involves analyzing the correlation between confidence scores and error rates across different OCR systems. We develop ConfBERT, a BERT-based model that incorporates OCR confidence scores into token embeddings and offers an optional pre-training phase for noise adjustment. Our experimental results demonstrate that integrating OCR confidence scores can enhance error detection capabilities. This work underscores the importance of OCR confidence scores in improving detection accuracy and reveals substantial disparities in performance between commercial and open-source OCR technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Adesam, Y., Dannélls, D., Tahmasebi, N.: Exploring the quality of the digital historical newspaper archive KubHist. DHN 9, 17 (2019)
Amrhein, C., Clematide, S.: Supervised OCR error detection and correction using statistical and neural machine translation methods. J. Lang. Technol. Comput. Linguist. (JLCL) 33(1), 49–76 (2018)
Arachchige, P., Randika, A.: Unknown-box approximation to improve optical character recognition performance (2021)
Baek, Y., et al.: CLEval: character-level evaluation for text detection and recognition tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 564–565 (2020)
Boros, E., Nguyen, N.K., Lejeune, G., Doucet, A.: Assessing the impact of OCR noise on multilingual event detection over digitised documents. Int. J. Digit. Libr. 23(3), 241–266 (2022)
Brill, E., Moore, R.C.: An improved error model for noisy channel spelling correction. In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pp. 286–293 (2000)
Chiron, G., Doucet, A., Coustaty, M., Moreux, J.P.: ICDAR2017 competition on post-OCR text correction. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1423–1428. IEEE (2017)
Church, K.W., Gale, W.A.: Probability scoring for spelling correction. Stat. Comput. 1, 93–103 (1991)
Cuper, M., van Dongen, C., Koster, T.: Unraveling confidence: examining confidence scores as proxy for OCR quality. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds.) ICDAR 2023. LNCS, vol. 14191, pp. 104–120. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41734-4_7
Du, Y., et al.: PP-OCR: a practical ultra lightweight OCR system. arXiv preprint arXiv:2009.09941 (2020)
Fleischhacker, D., Goederle, W., Kern, R.: Improving OCR quality in 19th century historical documents using a combined machine learning based approach. arXiv preprint arXiv:2401.07787 (2024)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
Gupta, A., et al.: Automatic assessment of OCR quality in historical documents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
Hajiali, M., Fonseca Cacho, J.R., Taghva, K.: Generating correction candidates for OCR errors using BERT language model and FastText SubWord embeddings. In: Arai, K. (ed.) Intelligent Computing. LNNS, vol. 283, pp. 1045–1053. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-80119-9_69
Hamdi, A., Jean-Caurant, A., Sidère, N., Coustaty, M., Doucet, A.: Assessing and minimizing the impact of OCR quality on named entity recognition. In: Hall, M., Merčun, T., Risse, T., Duchateau, F. (eds.) TPDL 2020. LNCS, vol. 12246, pp. 87–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54956-5_7
Hamdi, A., Pontes, E.L., Sidere, N., Coustaty, M., Doucet, A.: In-depth analysis of the impact of OCR errors on named entity recognition and linking. Nat. Lang. Eng. 29(2), 425–448 (2023)
Hemmer, A., Brachat, J., Coustaty, M., Ogier, J.M.: Estimating post-OCR denoising complexity on numerical texts. In: Nguyen, N.T., et al. (eds.) ACIIDS 2023. CCIS, vol. 1863, pp. 67–79. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42430-4_6
Hill, M.J., Hengchen, S.: Quantifying the impact of dirty OCR on historical text analysis: eighteenth century collections online as a case study. Digit. Scholarsh. Humanit. 34(4), 825–843 (2019)
Huang, Z., et al.: ICDAR2019 competition on scanned receipt OCR and information extraction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1516–1520. IEEE (2019)
Jatowt, A., Coustaty, M., Nguyen, N.V., Doucet, A., et al.: Deep statistical analysis of OCR errors for effective post-OCR processing. In: 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 29–38. IEEE (2019)
Jatowt, A., Coustaty, M., Nguyen, N.V., Doucet, A., et al.: Post-OCR error detection by generating plausible candidates. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 876–881. IEEE (2019)
Jaume, G., Ekenel, H.K., Thiran, J.P.: FUNSD: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6. IEEE (2019)
Kim, G., et al.: OCR-free document understanding transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 498–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_29
Mindee: doctr: Document text recognition (2021). https://github.com/mindee/doctr
Mutuvi, S., Doucet, A., Odeo, M., Jatowt, A.: Evaluating the impact of OCR errors on topic modeling. In: Dobreva, M., Hinze, A., Žumer, M. (eds.) ICADL 2018. LNCS, vol. 11279, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04257-8_1
Neudecker, C., Baierer, K., Gerber, M., Clausner, C., Antonacopoulos, A., Pletschacher, S.: A survey of OCR evaluation tools and metrics. In: The 6th International Workshop on Historical Document Imaging and Processing, pp. 13–18 (2021)
Nguyen, T.-T.-H., Coustaty, M., Doucet, A., Jatowt, A., Nguyen, N.-V.: Adaptive edit-distance and regression approach for post-OCR text correction. In: Dobreva, M., Hinze, A., Žumer, M. (eds.) ICADL 2018. LNCS, vol. 11279, pp. 278–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04257-8_29
Nguyen, T.T.H., Jatowt, A., Coustaty, M., Doucet, A.: Survey of post-OCR processing approaches. ACM Comput. Surv. (CSUR) 54(6), 1–37 (2021)
Nguyen, T.T.H., Jatowt, A., Nguyen, N.V., Coustaty, M., Doucet, A.: Neural machine translation with BERT for post-OCR error detection and correction. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, pp. 333–336 (2020)
Olejniczak, K., Šulc, M.: Text detection forgot about document OCR. arXiv preprint arXiv:2210.07903 (2022)
de Oliveira, L.L., et al.: Evaluating and mitigating the impact of OCR errors on information retrieval. Int. J. Digit. Libr. 24(1), 45–62 (2023)
Park, S., et al.: CORD: a consolidated receipt dataset for post-OCR parsing. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)
Ramirez-Orta, J.A., Xamena, E., Maguitman, A., Milios, E., Soto, A.J.: Post-OCR document correction with large ensembles of character sequence-to-sequence models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11192–11199 (2022)
Rigaud, C., Doucet, A., Coustaty, M., Moreux, J.P.: ICDAR 2019 competition on post-OCR text correction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1588–1593. IEEE (2019)
Rotman, D., Azulai, O., Shapira, I., Burshtein, Y., Barzelay, U.: Detection masking for improved OCR on noisy documents. arXiv preprint arXiv:2205.08257 (2022)
Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Spithourakis, G.P., Riedel, S.: Numeracy for language models: evaluating and improving their ability to predict numbers. arXiv preprint arXiv:1805.08154 (2018)
Springmann, U., Fink, F., Schulz, K.U.: Automatic quality evaluation and (semi-)automatic improvement of OCR models for historical printings. arXiv preprint arXiv:1606.05157 (2016)
Subramani, N., Matton, A., Greaves, M., Lam, A.: A survey of deep learning approaches for OCR and document understanding. arXiv preprint arXiv:2011.13534 (2020)
Todorov, K., Colavizza, G.: An assessment of the impact of OCR noise on language models. arXiv preprint arXiv:2202.00470 (2022)
Topçu, A.İ., Töreyin, B.U.: Neural machine translation approaches for post-OCR text processing. In: 2022 30th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2022)
Van Strien, D., Beelen, K., Ardanuy, M.C., Hosseini, K., McGillivray, B., Colavizza, G.: Assessing the impact of OCR quality on downstream NLP tasks (2020)
Yasin, N., Siddiqi, I., Moetesum, M., Rauf, S.A.: Transformer-based neural machine translation for post-OCR error correction in cursive text. In: Coustaty, M., Fornés, A. (eds.) ICDAR 2023. LNCS, vol. 14194, pp. 80–93. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41501-2_6
Zhu, Y., et al.: Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015)
Acknowledgments
This work was granted access to the HPC/AI resources of IDRIS under the allocation AD010614769 made by GENCI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hemmer, A., Coustaty, M., Bartolo, N., Ogier, JM. (2024). Confidence-Aware Document OCR Error Detection. In: Sfikas, G., Retsinas, G. (eds) Document Analysis Systems. DAS 2024. Lecture Notes in Computer Science, vol 14994. Springer, Cham. https://doi.org/10.1007/978-3-031-70442-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-70442-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70441-3
Online ISBN: 978-3-031-70442-0
eBook Packages: Computer ScienceComputer Science (R0)