Abstract
Every organization’s changing and increasingly complex environment poses increasingly serious challenges for BPM. Many processes are difficult to design, which reduces the chance of their predictability. Investigating the nature of processes and increasing efforts to support unstructured and knowledge-intensive processes becomes necessary. Therefore, the paper aims to explore the intricate nature and diversity of business processes in a multifaceted way, recognizing their dynamic adaptation to the evolving economic landscape. This study utilizes established classifications in order to categorize processes into four types: structured, structured with ad hoc exceptions, unstructured with pre-defined fragments, and completely unstructured. It takes a survey-based opinion research approach, employing CAWI for data collection, and utilizes statistical analysis. The analysis reveals that traditional, structured processes still constitute a substantial portion of organizational processes. Nevertheless, unstructured processes and unstructured processes with pre-defined fragments are gaining increasing relevance. The study also identifies significant correlations between the implementation of IT tools and the prevalence of unstructured processes. The research results can serve as a crucial knowledge resource for managers implementing and using BPM and software suppliers developing IT tools supporting BPM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antunes, P., Piono, A.J., Nkhoma, M., Thuan, N.H.: The composite approach as a hybrid approach to business process modeling: proposition and empirical evaluation. Bus. Process Manag. J. ahead-of-print (2023). https://doi.org/10.1108/BPMJ-11-2022-0569
APQC (n.d.), Process Classification Framework. https://www.apqc.org/process-frameworks. Accessed 30 Oct 2023
Auksztol, J., Chomuszko, M.: Model APQC – Uniwersalny Model Klasyfikacji Procesów (APQC Model – Universal Process Classification Model), In Auksztol, J., Chomuszko, M. (Eds.) Modelowanie organizacji procesowej (Modeling of process organization), pp. 73–90 (2013). Wydawnictwo Naukowe PWN, Warszawa
Bahrs, J., Müller, C.: Modelling and analysis of knowledge intensive business processes. In: Althoff, K.-D. et al. (eds.) Professional Knowledge Management, pp. 243–247 Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11590019_28
Becker, J., vom Brocke, J., Heddier, M., Seidel, S, S.: In search of information systems (grand) challenges. Bus. Inf. Syst. Eng. 57(6), 377–390 (2015). https://doi.org/10.1007/s12599-015-0394-0
Beh, E.J., Lombardo, R.: Correspondence Analysis: Theory, Practice and New Strategies (2014). https://doi.org/10.1002/9781118762875
Berger, S., Denner, M.S., Röglinger, M.: The Nature of Digital Technologies – Development of a Multi-layer Taxonomy (2018)
Berniak-Woźny, J., Szelągowski, M.: Towards the assessment of business process knowledge intensity – a systematic literature review. Bus. Process. Manag. J. 28(1), 40–61 (2021). https://doi.org/10.1108/BPMJ-01-2021-0012
Beverungen, D., Buijs, J.C.A.M., Becker, J., Di Ciccio, C., van der Aalst, W.M.P.: Seven paradoxes of business process management in a hyper-connected world. Bus. Inf. Syst. Eng. 63(2), 145–156 (2021). https://doi.org/10.1007/s12599-020-00646-z
vom Brocke, J., Baier, M.S., Schiedel, T., Stelzl, K., Röglinger, M., Wehking, C.: Context-aware business process management. Bus. Inf. Syst. Eng. 63(5), 533–550 (2021). https://doi.org/10.1007/s12599-021-00685-0
Dalmaris, P., Tsui, E., Hall, B., Smith, B.: A framework for the improvement of knowledge-intensive business processes. Bus. Process. Manag. J. 13(2), 279–305 (2007). https://doi.org/10.1108/14637150710740509
Denner, M.S., Röglinger, M., Schmiedel, T., Stelzl, K., Wehking, C.: How context-aware are extant BPM methods? - development of an assessment scheme. In: Weske, M. et al. (eds.) Business Process Management, pp. 480–495 Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_28
Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015). https://doi.org/10.1007/s13740-014-0038-4
Goni, J.I.C., Van Looy, A.: Process innovation capability in less-structured business processes: a systematic literature review. Bus. Process. Manag. J. 28(3), 557–584 (2022). https://doi.org/10.1108/BPMJ-07-2021-0487
Grisold, T., Groß, S., Stelzl, K., Mendling, J., Röglinger, M., Rosemann, M.: The five diamond method for explorative business process management. Bus. Inf. Syst. Eng. 64(2), 149–166 (2022). https://doi.org/10.1007/s12599-021-00703-1
Gronau, N., Weber, E.: Management of knowledge intensive business processes. In: Desel, J. et al. (eds.) Business Process Management, pp. 163–178 Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25970-1_11
Işik, Ö., Jones, M.C., Sidorova, A.: Practices of knowledge intensive process management: quantitative insights. Bus. Process. Manag. J. 19(3), 515–534 (2013). https://doi.org/10.1108/14637151311319932
Kagerbauer, M., Manz, W., Zumkeller, D.: Analysis of PAPI, CATI, and CAWI methods for a multiday household travel survey. In: Zmud, J., Lee-Gosselin, M., Munizaga, M., Carrasco, J.A. (Ed.) Transport Survey Methods, Emerald Group Publishing Limited, Leeds, pp. 289–304 (2013). https://doi.org/10.1108/9781781902882-015
Kemsley, S.: The changing nature of work: from structured to unstructured, from controlled to social. In: Rinderle-Ma, S. et al. (eds.) Business Process Management, p. 2 Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-2_2
Kregel, I., Koch, J., Plattfaut, R.: Beyond the hype: robotic process automation’s public perception over time. J. Organ. Comput. Electron. Commer. 31(2), 130–150 (2021). https://doi.org/10.1080/10919392.2021.1911586
Legner, C., et al.: Digitalization: opportunity and challenge for the business and information systems engineering community. Bus. Inf. Syst. Eng. 59(4), 301–308 (2017). https://doi.org/10.1007/s12599-017-0484-2
Li, J., Sun, W., Jiang, W., Zhang, L.: How the nature of exogenous shocks and crises impact company performance?: the effects of industry characteristics. IJRCM 6(4), 40–55 (2017). https://doi.org/10.4018/IJRCM.2017100103
Marjanovic, O.: A novel mechanism for business analytics value creation: improvement of knowledge-intensive business processes. J. Knowl. Manag. 26(1), 17–44 (2021). https://doi.org/10.1108/JKM-09-2020-0669
Marjanovic, O., Freeze, R.: Knowledge intensive business processes: theoretical foundations and research challenges. In: 2011 44th Hawaii International Conference on System Sciences, pp. 1–10 (2011). https://doi.org/10.1109/HICSS.2011.271
Marjanovic, O., Freeze, R.: Knowledge-intensive business process: deriving a sustainable competitive advantage through business process management and knowledge management integration. Knowl. Process. Manag. 19(4), 180–188 (2012). https://doi.org/10.1002/kpm.1397
Martín-Navarro, A., Lechuga Sancho, M., Medina-Garrido, J.: Determinants of BPMS use for knowledge management. J. Knowl. Manag. ahead-of-print, (2023). https://doi.org/10.1108/JKM-07-2022-0537
McCormack, K., et al.: A global investigation of key turning points in business process maturity. Bus. Process. Manag. J. 15(5), 792–815 (2009). https://doi.org/10.1108/14637150910987946
Olding, E., Rozwell, C.: Expand your bpm horizons by exploring unstructured processes. Gartner Technical Report G00172387, Published: 10 December 2009, Refreshed: 22 May 2015
Papavassiliou, G., Mentzas, G.: Knowledge modelling in weakly-structured business processes. J. Knowl. Manag. 7(2), 18–33 (2003). https://doi.org/10.1108/13673270310477261
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), p. 287 (2007). https://doi.org/10.1109/EDOC.2007.14
Röglinger, M., et al.: Exogenous shocks and business process management. Bus. Inf. Syst. Eng. 64(5), 669–687 (2022). https://doi.org/10.1007/s12599-021-00740-w
Rosemann, M., Recker, J., Flender, C.: Contextualisation of business processes. Int. J. Bus. Process. Integr. Manag. 3(1), 47–60 (2008). https://doi.org/10.1504/IJBPIM.2008.019347
Sarnikar, S., Deokar, A.V.: A design approach for process-based knowledge management systems. J. Knowl. Manag. 21(4), 693–717 (2017). https://doi.org/10.1108/JKM-09-2016-0376
Seethamraju, R., Marjanovic, O.: Role of process knowledge in business process improvement methodology: a case study. Bus. Process. Manag. J. 15(6), 920–936 (2009). https://doi.org/10.1108/14637150911003784
Szelągowski, M.: The knowledge and process dimensions. VINE J. Inf. Knowl. Manag. Syst. 51(2), 271–287 (2020). https://doi.org/10.1108/VJIKMS-09-2019-0150
Szelągowski, M., Berniak-Woźny, J.: The knowledge and process continuum. Knowl. Process. Manag. 26(4), 308–320 (2019). https://doi.org/10.1002/kpm.1611
Thomas, O., et al.: Global crises and the role of BISE. Bus. Inf. Syst. Eng. 62(4), 385–396 (2020). https://doi.org/10.1007/s12599-020-00657-w
Van Der Aalst, W.M.P., Hinz, O., Weinhardt, C.: Impact of COVID-19 on BISE research and education. Bus. Inf. Syst. Eng. 62(6), 463–466 (2020). https://doi.org/10.1007/s12599-020-00666-9
Van Der Aalst, W.M.P.: Hybrid Intelligence: to automate or not to automate, that is the question. IJISPM 9(2), 5–20 (2021). https://doi.org/10.12821/ijispm090201
Van Der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60(4), 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4
Van Der Aalst, W.M.P.: Business process management: a comprehensive survey. Int. Schol. Res. Not. 2013, e507984 (2013). https://doi.org/10.1155/2013/507984
Yang, C.G.: A study on the changes in the ICT industry after the COVID-19 pandemic. Ind. Manag. Data Syst. 123(1), 64–78 (2023). https://doi.org/10.1108/IMDS-03-2022-0165
Zelt, S., Schmiedel, T., vom Brocke, J.: Understanding the nature of processes: an information-processing perspective. Bus. Process. Manag. J. 24(1), 67–88 (2018). https://doi.org/10.1108/BPMJ-05-2016-0102
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Szelągowski, M. et al. (2024). Adapting to the Dynamic Nature of Business Processes in the Digital Age. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-70445-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70444-4
Online ISBN: 978-3-031-70445-1
eBook Packages: Computer ScienceComputer Science (R0)