Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14944))

  • 420 Accesses

Abstract

Explanation for Multivariate Time Series Classification (MTSC) is an important topic that is under explored. There are very few quantitative evaluation methodologies and even fewer examples of actionable explanation, where the explanation methods are shown to objectively improve specific computational tasks on time series data. In this paper we focus on analyzing InterpretTime, a recent evaluation methodology for attribution methods applied to MTSC. We showcase some significant weaknesses of the original methodology and propose ideas to improve both its accuracy and efficiency. Unlike related work, we go beyond evaluation and also showcase the actionability of the produced explainer ranking, by using the best attribution methods for the task of channel selection in MTSC. We find that perturbation-based methods such as SHAP and Feature Ablation work well across a set of datasets, classifiers and tasks and outperform gradient-based methods. We apply the best ranked explainers to channel selection for MTSC and show significant data size reduction and improved classifier accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://explodingtopics.com/blog/chatgpt-users.

  2. 2.

    https://github.com/mlgig/xai4mtsc_eval_actionability.

References

  1. Boniol, P., Meftah, M., Remy, E., Palpanas, T.: DCAM: dimension-wise class activation map for explaining multivariate data series classification. In: SIGMOD (2022)

    Google Scholar 

  2. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does BERT look at? An analysis of BERT’s attention. In: ACL (2019)

    Google Scholar 

  3. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica (2019)

    Google Scholar 

  4. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. DAMI (2019)

    Google Scholar 

  5. Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: a very fast (almost) deterministic transform for time series classification. In: SIGKDD (2021)

    Google Scholar 

  6. Der, A., et al.: Pupae: intuitive and actionable explanations for time series anomalies. In: SDM (2024)

    Google Scholar 

  7. Dhariyal, B., Le Nguyen, T., Ifrim, G.: Scalable classifier-agnostic channel selection for multivariate time series classification. DAMI (2023)

    Google Scholar 

  8. Dhariyal, B., Nguyen, T.L., Ifrim, G.: Fast channel selection for scalable multivariate time series classification. In: AALTD (2021)

    Google Scholar 

  9. Etmann, C., Lunz, S., Maass, P., Schönlieb, C.B.: On the connection between adversarial robustness and saliency map interpretability. In: ICML (2019)

    Google Scholar 

  10. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. JMLR (2019)

    Google Scholar 

  11. Foumani, N.M., Tan, C.W., Webb, G.I., Salehi, M.: Improving position encoding of transformers for multivariate time series classification. DAMI (2023)

    Google Scholar 

  12. Gomez, T., Fréour, T., Mouchère, H.: Metrics for saliency map evaluation of deep learning explanation methods. In: ICPRAI (2022)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. (2019)

    Google Scholar 

  15. Ismail Fawaz, H., et al.: Inceptiontime: finding alexnet for time series classification. DAMI (2020)

    Google Scholar 

  16. Kokhlikyan, N., et al.: Captum: a unified and generic model interpretability library for PyTorch. In: KDD (2020)

    Google Scholar 

  17. Le Nguyen, T., Gsponer, S., Ilie, I., O’reilly, M., Ifrim, G.: Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations. DAMI (2019)

    Google Scholar 

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NeurIPS (2017)

    Google Scholar 

  19. Mao, K., Dou, Z., Qian, H., Mo, F., Cheng, X., Cao, Z.: Convtrans: transforming web search sessions for conversational dense retrieval. In: EMNLP (2022)

    Google Scholar 

  20. Nguyen, T.T., Nguyen, T.L., Ifrim, G.: AMEE: a robust framework for explanation evaluation in time series classification. arXiv preprint arXiv:2306.05501 (2023)

  21. Nguyen, T.T., Nguyen, T.L., Ifrim, G.: Robust explainer recommendation for time series classification. Data Min. Knowl. Discov. (2024)

    Google Scholar 

  22. Oguiza, I.: TSAI - a state-of-the-art deep learning library for time series and sequential data. Github (2023). https://github.com/timeseriesAI/tsai

  23. Pasos-Ruiz, A., Flynn, M., Bagnall, A.: Benchmarking multivariate time series classification algorithms. DAMI (2020)

    Google Scholar 

  24. Serramazza, D.I., Nguyen, T.T., Le Nguyen, T., Ifrim, G.: Evaluating explanation methods for multivariate time series classification. In: AALTD (2023)

    Google Scholar 

  25. Singh, A., et al.: Fast and robust video-based exercise classification via body pose tracking and scalable multivariate time series classifiers. DAMI (2023)

    Google Scholar 

  26. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML (2017)

    Google Scholar 

  27. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.I.: Multirocket: multiple pooling operators and transformations for fast and effective time series classification. DAMI (2022)

    Google Scholar 

  28. Theissler, A., Spinnato, F., Schlegel, U., Guidotti, R.: Explainable AI for time series classification: a review, taxonomy and research directions. IEEE Access 10, 100700–100724 (2022)

    Article  Google Scholar 

  29. Turbé, H., Bjelogrlic, M., Lovis, C., Mengaldo, G.: Evaluation of post-hoc interpretability methods in time-series classification. Nat. Mach. Intell. (2023)

    Google Scholar 

  30. Zhou, B., Khosla, A., A., L., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  31. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: PMLR (2017)

    Google Scholar 

  32. Assaf, R., Giurgiu, I., Bagehorn, F., Schumann, A.: Mtex-CNN: multivariate time series explanations for predictions with convolutional neural networks. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 952–957. IEEE (2019)

    Google Scholar 

  33. Bi, X., Zhang, C., He, Y., Zhao, X., Sun, Y., Ma, Y.: Explainable time-frequency convolutional neural network for microseismic waveform classification. Inf. Sci. 546, 883–896 (2021)

    Article  MathSciNet  Google Scholar 

  34. Maweu, B.M., Dakshit, S., Shamsuddin, R., Prabhakaran, B.: CEFEs: a CNN explainable framework for ECG signals. Artif. Intell. Med. 115, 102059 (2021)

    Article  Google Scholar 

  35. Munir, M., Siddiqui, S.A., Küsters, F., Mercier, D., Dengel, A., Ahmed, S.: TSXplain: demystification of DNN decisions for time-series using natural language and statistical features. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 426–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_43

    Chapter  Google Scholar 

  36. Siddiqui, S.A., Mercier, D., Munir, M., Dengel, A., Ahmed, S.: Tsviz: demystification of deep learning models for time-series analysis. IEEE Access 7, 67027–67040 (2019)

    Article  Google Scholar 

  37. Sivill, T., Flach, P.: Limesegment: meaningful, realistic time series explanations. In: International Conference on Artificial Intelligence and Statistics, pp. 3418–3433. PMLR (2022)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive feedback. We are grateful to Jiawen Wei and Gianmarco Mengaldo for detailed discussions on the original InterpretTime methodology. We thank all researchers working on time series and explainable AI who have made their data, code and results open source to help the reproducibility of research methods in this area. This work was funded by Science Foundation Ireland through the SFI Centre for Research Training in Machine Learning (18/CRT/6183) and the Insight Centre for Data Analytics (12/RC/2289_P2). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Italo Serramazza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2722 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serramazza, D.I., Nguyen, T.L., Ifrim, G. (2024). Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14944. Springer, Cham. https://doi.org/10.1007/978-3-031-70359-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70359-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70358-4

  • Online ISBN: 978-3-031-70359-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics