Nothing Special   »   [go: up one dir, main page]

Skip to main content

Three-Stage Extraction of Spatial Relationships Using Markers

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2024)

Abstract

We present SpaRel – a system for Spatial Relation Extraction (SRE), which is focused on intra-sentence Spatial Relation Extraction. It was evaluated on three datasets: English (CLEF2017 mSpRL, SpaceEval) and Polish (PST2.0). We propose a novel procedure for joint relation elements discovery and classification. It significantly reduces the number of possible triplets checked for representing relation instances. This results in significant improvement in the quality and speed of the relation extraction process. To represent instances of relation instances, we expanded approaches to Relation Extraction, but we tried to extract limited amount of the necessary intermediate information. We propose a special procedure for resolving issues of one spatial indicator involved in many relations. The best results were achieved with the DeBERTa v3 (large) language model. We also studied SRE from the point of evaluation reliability and reproducibility of the previous approaches. Several issues related to the SpaceEval dataset were identified and their potential impact on results was discussed. Problems with one of the SOTA systems were identified and discussed. In a broader context, we have identified and discussed all the factors that hamper comparison of results in Relation Extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bassignana, E., Plank, B.: What do you mean by relation extraction? A survey on datasets and study on scientific relation classification. In: Proceedings of the 60th ACL: Student Research Workshop, pp. 67–83. ACL (2022)

    Google Scholar 

  2. Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Adversarial training for multi-context joint entity and relation extraction. In: Proceedings of the 2018 EMNLP, pp. 2830–2836. ACL (2018)

    Google Scholar 

  3. Bouraoui, Z., Camacho-Collados, J., Schockaert, S.: Inducing relational knowledge from BERT. In: The 34th Conference on Artificial Intelligence, AAAI, pp. 7456–7463. AAAI Press (2020)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv: abs/1810.04805 (2019)

  5. D’Souza, J., Ng, V.: Sieve-based spatial relation extraction with expanding parse trees. In: Proceedings of the 2015 EMNLP, pp. 758–768. ACL, September 2015

    Google Scholar 

  6. D’Souza, J., Ng, V.: UTD: ensemble-based spatial relation extraction. In: Proceedings of the 9th SemEval 2015, pp. 862–869. ACL, June 2015

    Google Scholar 

  7. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)

    Google Scholar 

  8. Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The IAPR TC12 benchmark: a new evaluation resource for visual information systems. In: Workshop Ontoimage, October 2006

    Google Scholar 

  9. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with disentangled attention (2020). https://doi.org/10.48550/ARXIV.2006.03654

  10. Kanclerz, K., Piasecki, M.: Deep neural representations for multiword expressions detection. In: Proceedings of the 60th ACL: Student Research Workshop, pp. 444–453. ACL (2022)

    Google Scholar 

  11. Kolomiyets, O., Kordjamshidi, P., Bethard, S., Moens, M.: Semeval-2013 task 3: spatial role labeling. In: *SEM 2013 - 2nd Joint Conference on Lexical and Computational Semantics, pp. 255–262. ACL (2013)

    Google Scholar 

  12. Kolomiyets, O., Kordjamshidi, P., Moens, M.F., Bethard, S.: SemEval-2013 task 3: spatial role labeling. In: 2nd Joint Conference on Lexical and Computational Semantics (*SEM), vol. 2: Proceedings of the 7th (SemEval 2013), pp. 255–262. ACL (2013)

    Google Scholar 

  13. Kordjamshidi, P., Bethard, S., Moens, M.: Semeval-2012 task 3: spatial role labeling. In: Proceedings of the 6th SemEval, pp. 365–373. *SEM 2012 - 1st Joint Conference on Lexical and Computational Semantics, ACL (2012)

    Google Scholar 

  14. Kordjamshidi, P., van Otterlo, M., Moens, M.F.: Spatial role labeling: task definition and annotation scheme. In: LREC (2010)

    Google Scholar 

  15. Kordjamshidi, P., Rahgooy, T., Moens, M.F., Pustejovsky, J., Manzoor, U., Roberts, K.: CLEF 2017: multimodal spatial role labeling (MSPRL) task overview. In: Jones, Gareth J.F., et al. (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction, pp. 367–376. Springer, Cham (2017)

    Google Scholar 

  16. Mani, I., et al.: SpatialML: annotation scheme, resources, and evaluation. Lang. Resour. Eval. 44, 263–280 (2010)

    Article  Google Scholar 

  17. Marcińczuk, M., Oleksy, M., Wieczorek, J.: Evaluation of knowledge-based recognition of spatial expressions for Polish. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds.) ICCCI 2020. LNCS (LNAI), vol. 12496, pp. 682–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63007-2_53

    Chapter  Google Scholar 

  18. Marcińczuk, M., Oleksy, M., Wieczorek, J.: PST 2.0 – corpus of Polish spatial texts. In: Proceedings of the 12th LREC, pp. 2167–2174. ELRA, May 2020

    Google Scholar 

  19. Marcińczuk, M., Oleksy, M., Wieczorek, J.: Towards recognition of spatial relations between entities for polish. Cogn. Stud.\(|\)Études cognitives 16, 119–132 (2016)

    Google Scholar 

  20. Moussa, A., Fournier, S., Mahmoudi, K., Espinasse, B., Faiz, S.: Mixing static word embeddings and RoBERTa for spatial role labeling. Procedia Comput. Sci. 207, 2950–2957 (2022). Proceedings of the 26th International Conference on KES2022

    Google Scholar 

  21. Mroczkowski, R., Rybak, P., Wróblewska, A., Gawlik, I.: HerBERT: efficiently pretrained transformer-based language model for Polish. In: Proceedings of the 8th Workshop on Balto-Slavic NLP, pp. 1–10. ACL (2021)

    Google Scholar 

  22. Nichols, E., Botros, F.: SpRL-CWW: spatial relation classification with independent multi-class models. In: Proceedings of the 9th SemEval 2015, pp. 895–901. ACL, June 2015

    Google Scholar 

  23. Oleksy, M., Marcińczuk, M., Bernaś, T., Wieczorek, J., Kocoń, J.: KPWr annotation guidelines - spatial expressions (2.0) (2019). http://hdl.handle.net/11321/719, CLARIN-PL

  24. Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31, 71–106 (2005)

    Google Scholar 

  25. Pustejovsky, J., Kordjamshidi, P., Moens, M.F., Levine, A., Dworman, S., Yocum, Z.: SemEval-2015 task 8: SpaceEval. In: Proceedings of the 9th SemEval 2015, pp. 884–894. ACL (2015)

    Google Scholar 

  26. Pustejovsky, J., Moszkowicz, J.L., Verhagen, M.: A linguistically grounded annotation language for spatial information. Trait. Autom. des Langues 53, 87–113 (2012)

    Google Scholar 

  27. Pustejovsky, J., Yocum, Z.: Capturing motion in ISO-SpaceBank. In: Proceedings of the 9th Joint ISO - ACL SIGSEM Workshop on Interoperable Semantic Annotation, pp. 25–34. ACL (2013)

    Google Scholar 

  28. Roberts, K., Harabagiu, S.: UTD-SpRL: a joint approach to spatial role labeling. In: *SEM 2012: The 1st Joint Conference on Lexical and Computational Semantics, pp. 419–424. ACL (2012)

    Google Scholar 

  29. Salaberri, H., Arregi, O., Zapirain, B.: IXAGroupEHUSpaceEval: (X-space) a WordNet-based approach towards the automatic recognition of spatial information following the ISO-space annotation scheme. In: Proceedings of the 9th SemEval 2015, pp. 856–861. ACL (2015)

    Google Scholar 

  30. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th ACL (Vol. 1: Long Papers), pp. 1715–1725. ACL (2016)

    Google Scholar 

  31. Shin, H.J., Park, J.Y., Yuk, D.B., Lee, J.S.: BERT-based spatial information extraction. In: Proceedings of the Third International Workshop on Spatial Language Understanding, pp. 10–17. ACL (2020)

    Google Scholar 

  32. Taillé, B., Guigue, V., Scoutheeten, G., Gallinari, P.: Let’s stop incorrect comparisons in end-to-end relation extraction! In: Proceedings of the 2020 EMNLP, pp. 3689–3701. ACL (2020)

    Google Scholar 

  33. Wang, F., Li, P., Zhu, Q.: A hybrid model of classification and generation for spatial relation extraction. In: Proceedings of the 29th COLING, pp. 1915–1924 (2022)

    Google Scholar 

  34. Wu, S., He, Y.: Enriching pre-trained language model with entity information for relation classification. CoRR abs/1905.08284 (2019). http://arxiv.org/abs/1905.08284

  35. Xu, C., Dietz Saldanha, E.A., Gromann, D., Zhou, B.: A cognitively motivated approach to spatial information extraction. In: Proceedings of the Third International Workshop on Spatial Language Understanding, pp. 18–28. ACL, November 2020

    Google Scholar 

  36. Zhou, W., Chen, M.: An improved baseline for sentence-level relation extraction. In: Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the ACL and the 12th IJCNLP (Vol. 2: Short Papers), pp. 161–168. ACL (2022)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Science and Higher Education as a part of CLARIN-PL project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Piasecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olek, M., Piasecki, M. (2024). Three-Stage Extraction of Spatial Relationships Using Markers. In: Nguyen, NT., et al. Advances in Computational Collective Intelligence. ICCCI 2024. Communications in Computer and Information Science, vol 2165. Springer, Cham. https://doi.org/10.1007/978-3-031-70248-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70248-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70247-1

  • Online ISBN: 978-3-031-70248-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics