Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Romanian Offensive Language Detection Through Knowledge Distillation, Multi-task Learning, and Data Augmentation

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2024)

Abstract

This paper highlights the significance of natural language processing (NLP) within artificial intelligence, underscoring its pivotal role in comprehending and modeling human language. Recent advancements in NLP, particularly in conversational bots, have garnered substantial attention and adoption among developers. This paper explores advanced methodologies for attaining smaller and more efficient NLP models. Specifically, we employ three key approaches: (1) training a Transformer-based neural network to detect offensive language, (2) employing data augmentation and knowledge distillation techniques to increase performance, and (3) incorporating multi-task learning with knowledge distillation and teacher annealing using diverse datasets to enhance efficiency. The culmination of these methods has yielded demonstrably improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.openai.com/chatgpt.

  2. 2.

    https://huggingface.co/datasets/readerbench/ro-offense.

  3. 3.

    https://github.com/xashru/mixup-text.

  4. 4.

    https://huggingface.co/datasets/readerbench/ro-offense.

  5. 5.

    https://github.com/Alegzandra/RED-Romanian-Emotions-Dataset.

  6. 6.

    https://github.com/DianaHoefels/CoRoSeOf.

  7. 7.

    https://github.com/ancatache/LaRoSeDa.

  8. 8.

    https://github.com/huggingface/transformers.

  9. 9.

    https://huggingface.co/.

  10. 10.

    https://huggingface.co/racai/distilbert-base-romanian-cased.

  11. 11.

    https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1.

References

  1. Avram, A.M., et al.: Distilling the knowledge of romanian berts using multiple teachers. In: Proceedings of the thirteenth LREC, pp. 374–384 (2022)

    Google Scholar 

  2. Awal, M.R., Cao, R., Lee, R.K.-W., Mitrović, S.: AngryBERT: joint learning target and emotion for hate speech detection. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 701–713. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_55

    Chapter  Google Scholar 

  3. Buciluǎ, Cristian anrofbd Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD, pp. 535–541 (2006)

    Google Scholar 

  4. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  5. Chiril, P., Pamungkas, E.W., Benamara, F., Moriceau, V., Patti, V.: Emotionally informed hate speech detection: a multi-target perspective. Cogn. Comput. 14, 322–352 (2022). https://doi.org/10.1007/s12559-021-09862-5

  6. Ciobotaru, A., Constantinescu, M.V., Dinu, L.P., Dumitrescu, S.: Red v2: enhancing red dataset for multi-label emotion detection. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 1392–1399 (2022)

    Google Scholar 

  7. Clark, K., Luong, M.T., Khandelwal, U., Manning, C.D., Le, Q.: Bam! born-again multi-task networks for natural language understanding. In: Proceedings of the 57th ACL, pp. 5931–5937 (2019)

    Google Scholar 

  8. Cojocaru, A., Paraschiv, A., Dascalu, M.: News-ro-offense-a romanian offensive language dataset and baseline models centered on news article comments. In: RoCHI, pp. 65–72 (2022)

    Google Scholar 

  9. Council, E.: Framework decision on combating certain forms and expressions of racism and xenophobia. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al33178 (2008), Accesed 16 June 2023

  10. Feng, S.Y., et al.: A survey of data augmentation approaches for NLP. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 968–988 (2021)

    Google Scholar 

  11. Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text. ACM Comput. Surv. (CSUR) 51(4), 1–30 (2018)

    Article  Google Scholar 

  12. Guo, H., Mao, Y., Zhang, R.: Augmenting data with mixup for sentence classification: an empirical study. CoRR abs/1905.08941 (2019)

    Google Scholar 

  13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  14. Hoefels, D.C., Çöltekin, Ç., Mădroane, I.D.: Coroseof-an annotated corpus of romanian sexist and offensive tweets. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2269–2281 (2022)

    Google Scholar 

  15. Hosseini, M., Caragea, C.: Distilling knowledge for empathy detection. In: Findings of EMNLP 2021, pp. 3713–3724 (2021)

    Google Scholar 

  16. Jafari, A., Rezagholizadeh, M., Sharma, P., Ghodsi, A.: Annealing knowledge distillation. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 2493–2504 (2021)

    Google Scholar 

  17. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  18. Li, W.-H., Bilen, H.: Knowledge distillation for multi-task learning. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, Part VI. LNCS, vol. 12540, pp. 163–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_13

    Chapter  Google Scholar 

  19. Li, Y., Caragea, C.: Target-aware data augmentation for stance detection. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1850–1860 (2021)

    Google Scholar 

  20. Li, Y., Zhao, C., Caragea, C.: Improving stance detection with multi-dataset learning and knowledge distillation. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6332–6345 (2021)

    Google Scholar 

  21. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language understanding. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4487–4496 (2019)

    Google Scholar 

  22. Liu, Y., Shen, S., Lapata, M.: Noisy self-knowledge distillation for text summarization. In: Proceedings of the 2021 Conference of the NAACL, pp. 692–703 (2021)

    Google Scholar 

  23. Martins, R., Gomes, M., Almeida, J.J., Novais, P., Henriques, P.: Hate speech classification in social media using emotional analysis. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 61–66. IEEE (2018)

    Google Scholar 

  24. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 5191–5198 (2020)

    Google Scholar 

  25. Niculescu, M.A., Ruseti, S., Dascalu, M.: Rogpt2: Romanian gpt2 for text generation. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1154–1161. IEEE (2021)

    Google Scholar 

  26. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  27. Park, S., Caragea, C.: Multi-task knowledge distillation with embedding constraints for scholarly keyphrase boundary classification. In: Proceedings of the 2023 Conference on EMNLP, pp. 13026–13042 (2023)

    Google Scholar 

  28. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  29. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  30. Struß, J.M., Siegel, M., Ruppenhofer, J., Wiegand, M., Klenner, M., et al.: Overview of germeval task 2 (2019)

    Google Scholar 

  31. Tache, A., Mihaela, G., Ionescu, R.T.: Clustering word embeddings with self-organizing maps. application on laroseda-a large romanian sentiment data set. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 949–956 (2021)

    Google Scholar 

  32. Vlad, G.A., Tanase, M.A., Onose, C., Cercel, D.C.: Sentence-level propaganda detection in news articles with transfer learning and bert-bilstm-capsule model. In: Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, pp. 148–154 (2019)

    Google Scholar 

  33. Waseem, Z., Thorne, J., Bingel, J.: Bridging the gaps: multi task learning for domain transfer of hate speech detection. Online harassment, pp. 29–55 (2018)

    Google Scholar 

  34. Wei, J., Zou, K.: Eda: Easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6382–6388 (2019)

    Google Scholar 

  35. Wu, X., Lv, S., Zang, L., Han, J., Hu, S.: Conditional BERT Contextual Augmentation. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019, IV. LNCS, vol. 11539, pp. 84–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_7

    Chapter  Google Scholar 

  36. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  37. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R.: SemEval-2019 task 6: identifying and categorizing offensive language in social media (OffensEval). In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86. Minneapolis, Minnesota, USA (2019)

    Google Scholar 

  38. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Acknowledgements

This work was supported by the NUST POLITEHNICA Bucharest through the PubArt program, and a grant from the National Program for Research of the National Association of Technical Universities - GNAC ARUT 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru-Clementin Cercel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matei, VC., Tăiatu, IM., Smădu, RA., Cercel, DC. (2024). Enhancing Romanian Offensive Language Detection Through Knowledge Distillation, Multi-task Learning, and Data Augmentation. In: Rapp, A., Di Caro, L., Meziane, F., Sugumaran, V. (eds) Natural Language Processing and Information Systems. NLDB 2024. Lecture Notes in Computer Science, vol 14762. Springer, Cham. https://doi.org/10.1007/978-3-031-70239-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70239-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70238-9

  • Online ISBN: 978-3-031-70239-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics