Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolution-Based Feature Selection for Predicting Dissolved Oxygen Concentrations in Lakes

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Accurate prediction of dissolved oxygen (DO) concentrations in lakes requires a comprehensive study of phenological patterns across ecosystems, highlighting the need for precise selection of interactions amongst external factors and internal physical-chemical-biological variables. This paper presents the Multi-population Cognitive Evolutionary Search (MCES), a novel evolutionary algorithm for complex feature interaction selection problems. MCES allows models within every population to evolve adaptively, selecting relevant feature interactions for different lake types and tasks. Evaluated on diverse lakes in the Midwestern USA, MCES not only consistently produces accurate predictions with few observed labels but also, through gene maps of models, reveals sophisticated phenological patterns of different lake types, embodying the innovative concept of “AI from nature, for nature”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birge, E.A.: Gases dissolved in the waters of Wisconsin lakes. Trans. Am. Fish. Soc. 35(1), 143–163 (1906)

    Article  Google Scholar 

  2. Brookhouse, J., Freitas, A.: Fair feature selection with a lexicographic multi-objective genetic algorithm. In: Rudolph, G., Kononova, A., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature – PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part II, pp. 151–163. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_11

    Chapter  Google Scholar 

  3. Chao, S.K., Cheng, G.: A generalization of regularized dual averaging and its dynamics. arXiv preprint arXiv:1909.10072 (2019)

  4. Correia, J., Machado, P., Romero, J., Carballal, A.: Feature Selection and Novelty in Computational Aesthetics. In: Machado, P., McDermott, J., Carballal, A. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design, pp. 133–144. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36955-1_12

    Chapter  Google Scholar 

  5. Ghosh, R., et al.: Robust inverse framework using knowledge-guided self-supervised learning: an application to hydrology. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 465–474 (2022)

    Google Scholar 

  6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Google Scholar 

  7. Hamilton, D.P., Schladow, S.G.: Prediction of water quality in lakes and reservoirs. part i-model description. Ecol. model. 96(1-3), 91–110 (1997)

    Google Scholar 

  8. Hipsey, M.R., et al.: A general lake model (GLM 3.0) for linking with high-frequency sensor data from the global lake ecological observatory network (GLEON). Geoscientific Model Dev. 12(1), 473–523 (2019)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Janssen, A.B., Arhonditsis, G.B., Beusen, A., Bolding, K., Bruce, L., Bruggeman, J., Couture, R.M., Downing, A.S., Alex Elliott, J., Frassl, M.A., et al.: Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquat. Ecol. 49, 513–548 (2015)

    Article  Google Scholar 

  11. Jenny, J.P., et al.: Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Nat. Acad. Sci. 113(45), 12655–12660 (2016)

    Article  Google Scholar 

  12. Jia, X., et al.: Physics guided RNNs for modeling dynamical systems: a case study in simulating lake temperature profiles. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 558–566. SIAM (2019)

    Google Scholar 

  13. Khawar, F., Hang, X., Tang, R., Liu, B., Li, Z., He, X.: AutoFeature: searching for feature interactions and their architectures for click-through rate prediction. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 625–634 (2020)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23(12), 5089–5110 (2019)

    Article  Google Scholar 

  16. Ladwig, R., et al.: Long-term change in metabolism phenology in north temperate lakes. Limnol. Oceanogr. 67(7), 1502–1521 (2022)

    Article  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  18. Li, J., et al.: Feature selection: a data perspective. ACM comput. surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  19. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2016)

    Article  Google Scholar 

  20. Lin, J.Y., Ke, H.R., Chien, B.C., Yang, W.P.: Classifier design with feature selection and feature extraction using layered genetic programming. Expert Syst. Appl. 34(2), 1384–1393 (2008)

    Article  Google Scholar 

  21. Liu, B., Xue, N., Guo, H., Tang, R., Zafeiriou, S., He, X., Li, Z.: AutoGroup: Automatic feature grouping for modelling explicit high-order feature interactions in CTR prediction. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 199–208 (2020)

    Google Scholar 

  22. Liu, B., Zhu, C., Li, G., Zhang, W., et al.: AutoFIS: automatic feature interaction selection in factorization models for click-through rate prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 2636–2645 (2020)

    Google Scholar 

  23. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: International Conference on Learning Representations (2019)

    Google Scholar 

  24. Liu, Y., et al.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. 34(2), 550–570 (2021)

    Article  MathSciNet  Google Scholar 

  25. Meyer, M.F., et al.: National-scale remotely sensed lake trophic state from 1984 through 2020. Sci. Data 11(1), 77 (2024)

    Article  Google Scholar 

  26. Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 106–117 (2006)

    Google Scholar 

  27. Phillips, J.S.: Time-varying responses of lake metabolism to light and temperature. Limnol. Oceanogr. 65(3), 652–666 (2020)

    Article  Google Scholar 

  28. Saloranta, T.M., Andersen, T.: MyLake-a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol. Model. 207(1), 45–60 (2007)

    Article  Google Scholar 

  29. Shang, R., et al.: A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem. Inf. Sci. 277, 609–642 (2014)

    Article  MathSciNet  Google Scholar 

  30. Solomon, C.T., et al.: Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnol. Oceanogr. 58(3), 849–866 (2013)

    Article  Google Scholar 

  31. Sommer, U., et al.: Beyond the plankton ecology group (peg) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012)

    Article  Google Scholar 

  32. Song, W., et al.: Autoint: automatic feature interaction learning via self-attentive neural networks. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 1161–1170 (2019)

    Google Scholar 

  33. Staehr, P.A., et al.: Lake metabolism and the diel oxygen technique: state of the science. Limnol. Oceanogr. Methods 8(11), 628–644 (2010)

    Article  Google Scholar 

  34. Tang, K., Yang, P., Yao, X.: Negatively correlated search. IEEE J. Sel. Areas Commun. 34(3), 542–550 (2016)

    Article  Google Scholar 

  35. Telikani, A., Tahmassebi, A., et al.: Evolutionary machine learning: a survey. ACM Comput. Surv. 54(8), 1–35 (2021)

    Article  Google Scholar 

  36. Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differential evolution for large-scale optimization. Soft. Comput. 15(11), 2089–2107 (2011)

    Article  Google Scholar 

  37. Wilson, P.C.: Water quality notes: dissolved oxygen: Sl313/ss525, 1/2010. EDIS 2010(2) (2010)

    Google Scholar 

  38. Woolway, R.I., et al.: Phenological shifts in lake stratification under climate change. Nat. Commun. 12(1), 2318 (2021)

    Article  Google Scholar 

  39. Wu, G., Mallipeddi, R., Suganthan, P.N., Wang, R., Chen, H.: Differential evolution with multi-population based ensemble of mutation strategies. Inf. Sci. 329, 329–345 (2016)

    Article  Google Scholar 

  40. Xiao, L.: Dual averaging method for regularized stochastic learning and online optimization. Adv. Neural Inf. Proc. Syst. 22 (2009)

    Google Scholar 

  41. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  42. Ye, Y., et al.: Mane: organizational network embedding with multiplex attentive neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 4047–4061 (2022)

    Article  Google Scholar 

  43. Yu, R., Xu, X., Ye, Y., Liu, Q., Chen, E.: Cognitive evolutionary search to select feature interactions for click-through rate prediction. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3151–3161 (2023)

    Google Scholar 

  44. Yu, R., Ye, Y., Liu, Q., Wang, Z., Yang, C., Hu, Y., Chen, E.: XCrossNet: feature structure-oriented learning for click-through rate prediction. In: Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference (PAKDD), pp. 436–447. Springer (2021). https://doi.org/10.1007/978-3-030-75765-6_35

  45. Zhang, F., Mei, Y., Zhang, M.: A two-stage genetic programming hyper-heuristic approach with feature selection for dynamic flexible job shop scheduling. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 347–355 (2019)

    Google Scholar 

  46. Zhao, H., Wu, X., et al.: CoEA: a cooperative-competitive evolutionary algorithm for bidirectional recommendations. IEEE Trans. Evol. Comput. 26(1), 28–42 (2021)

    Article  Google Scholar 

  47. Zhu, L., Ma, Y., Bai, Y.: A self-adaptive multi-population differential evolution algorithm. Nat. Comput. 19, 211–235 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the University of Pittsburgh Center for Research Computing through the resources provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Jia .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, R. et al. (2024). Evolution-Based Feature Selection for Predicting Dissolved Oxygen Concentrations in Lakes. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. https://doi.org/10.1007/978-3-031-70085-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70085-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70084-2

  • Online ISBN: 978-3-031-70085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics