Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Interactive and Social Explainable Artificial Intelligence for Digital History

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2024)

Abstract

Due to recent development and improvements, methods from the field of machine learning (ML) are increasingly adopted in various domains, including historical research. However, state-of-the-art ML models are usually black-boxes that lack transparency and interpretability. Therefore, explainable AI (XAI) methods try to make black-box models more transparent in order to inspire trust of the user. Despite numerous opportunities to apply XAI in digital history, they have not been adopted widely. Moreover, most of the XAI methods applied to generate historical insights are static and not user-centric. In this paper, we propose an architecture for applying XAI in digital history, which can be used for various tasks like optical character recognition (OCR), text embeddings or ink detection. The architecture proposed will produce interactive explanations to incrementally co-construct understanding of a user about the output of the AI system, instead of providing one-shot explanations. Due to a lack of ground truth in many tasks of digital history research, verification of model outputs is a difficult task for historical researchers. Therefore, we propose a user-centric framework to enhance user trust into the system, which is also crucial to verify given outputs from a black-box model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Media Monitoring of the past, https://impresso-project.ch/.

  2. 2.

    See for example letters in the State Archives of Belgium, https://arch.be.

  3. 3.

    Vesuvius Challenge: https://scrollprize.org/.

  4. 4.

    E.g. the Vesuvius challenge: www.scrollprize.org.

References

  1. Anders, C.J., Weber, L., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Finding and removing clever Hans: using explanation methods to debug and improve deep models. Inf. Fusion 77, 261–295 (2022)

    Article  Google Scholar 

  2. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, 13–17 May 2019, pp. 1078–1088. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  3. Argyrou, A., Agapiou, A.: A review of artificial intelligence and remote sensing for archaeological research. Remote Sens. 14(23), 6000 (2022)

    Article  Google Scholar 

  4. Babu, N., Soumya, A.: Character recognition in historical handwritten documents–a survey. In: 2019 International Conference on Communication and Signal Processing (ICCSP), pp. 0299–0304. IEEE (2019)

    Google Scholar 

  5. Bod, R.: A New History of the Humanities. Oxford University Press, Oxford (2010)

    Google Scholar 

  6. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245–317 (2021)

    Article  MathSciNet  Google Scholar 

  7. Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 6276–6282. AAAI Press, Macao, China (2019)

    Google Scholar 

  8. Chapinal-Heras, D., Díaz-Sánchez, C.: A review of AI applications in human sciences research. Digit. Appl. Archaeol. Cult. Heritage, e00288 (2023)

    Google Scholar 

  9. Eberle, O., Büttner, J., El-Hajj, H., Montavon, G., Müller, K.R., Valleriani, M.: Insightful analysis of historical sources at scales beyond human capabilities using unsupervised machine learning and XAI. arXiv preprint arXiv:2310.09091 (2023)

  10. Fickers, A.: Veins filled with the diluted sap of rationality: a critical reply to Rens Bod. Low Countries Hist. Rev. 128(4), 155–163 (2013)

    Article  Google Scholar 

  11. Fickers, A., Tatarinov, J., van der Heijden, T.: Digital history and hermeneutics–between theory and practice: an introduction. In: Digital History and Hermeneutics Between Theory and Practice, pp. 1–22. De Gruyter, Berlin, Boston (2022)

    Google Scholar 

  12. Hempel, C.G.: Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. The Free Press, New York (1965)

    Google Scholar 

  13. Hulstijn, J., Tchappi, I., Najjar, A., Aydoğan, R.: Metrics for evaluating explainable recommender systems. In: Calvaresi, D., et al. (eds.) Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. LNCS, vol. 14127, pp. 212–230. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40878-6_12

  14. Jacovi, A.: Trends in explainable AI (XAI) literature (2023)

    Google Scholar 

  15. Jain, V., Ratnam, K., Skariah, S.M.: Intervention of artificial intelligence in history, historical excavations and archaeology. In: 2021 International Conference on Technological Advancements and Innovations (ICTAI), pp. 127–132. IEEE (2021)

    Google Scholar 

  16. Joshi, G., Walambe, R., Kotecha, K.: A review on explainability in multimodal deep neural nets. IEEE Access 9, 59800–59821 (2021)

    Article  Google Scholar 

  17. Martínek, J., Lenc, L., Král, P.: Building an efficient OCR system for historical documents with little training data. Neural Comput. Appl. 32, 17209–17227 (2020)

    Article  Google Scholar 

  18. McGillivray, B., Tóth, G.M.: Applying Language Technology in Humanities Research: Design, Application, and the Underlying Logic. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46493-6

  19. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  20. Parker, C.S., Parsons, S., Bandy, J., Chapman, C., Coppens, F., Seales, W.B.: From invisibility to readability: recovering the ink of Herculaneum. PLoS ONE 14(5), e0215775 (2019). https://doi.org/10.1371/journal.pone.0215775

  21. Parsons, S., Parker, C.S., Chapman, C., Hayashida, M., Seales, W.B.: EduceLab-scrolls: verifiable recovery of text from Herculaneum papyri using X-ray CT. arXiv preprint arXiv:2304.02084 (2023)

  22. Rodis, N., Sardianos, C., Papadopoulos, G.T., Radoglou-Grammatikis, P., Sarigiannidis, P., Varlamis, I.: Multimodal explainable artificial intelligence: a comprehensive review of methodological advances and future research directions. arXiv preprint arXiv:2306.05731 (2023)

  23. Rohlfing, K., et al.: Explanation as a social practice: toward a conceptual framework for the social design of AI systems. IEEE Trans. Cogn. Dev. Syst. 13, 717–728 (2021). https://doi.org/10.1109/TCDS.2020.3044366

    Article  Google Scholar 

  24. Schmid, U., Wrede, B.: What is missing in XAI so far? An interdisciplinary perspective. KI-Künstliche Intelligenz 36(3), 303–315 (2022)

    Article  Google Scholar 

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Sommerschield, T., et al.: Machine learning for ancient languages: a survey. Comput. Linguist. 49(3), 703–747 (2023)

    Article  Google Scholar 

  27. Somrak, M., Džeroski, S., Kokalj, Ž: Learning to classify structures in ALS-derived visualizations of ancient Maya settlements with CNN. Remote Sens. 12(14), 2215 (2020)

    Article  Google Scholar 

  28. Son, J., Jin, J., Yoo, H., Bak, J., Cho, K., Oh, A.: Translating Hanja historical documents to contemporary Korean and English. arXiv preprint arXiv:2205.10019 (2022)

  29. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  30. Underwood, T.: A genealogy of distant reading. Digit. Humanit. Q. 11(2) (2017)

    Google Scholar 

  31. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31(2), 841–887 (2018)

    Google Scholar 

  32. Walton, D.: Dialogical Models of Explanation, pp. 1–9. AAAI, Menlo Park, California (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the EXPECTATION project (CHIST-ERA-19-XAI-005) and by Deep Data Science of Digital History (D4H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albrecht, R., Hulstijn, J., Tchappi, I., Najjar, A. (2024). Towards Interactive and Social Explainable Artificial Intelligence for Digital History. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70074-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70073-6

  • Online ISBN: 978-3-031-70074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics