Abstract
Unsupervised anomaly detection encompasses diverse applications in industrial settings where a high-throughput and precision is imperative. Early works were centered around one-class-one-model paradigm, which poses significant challenges in large-scale production environments. Knowledge-distillation based multi-class anomaly detection promises a low latency with a reasonably good performance but with a significant drop as compared to one-class version. We propose a DCAM (Distributed Convolutional Attention Module) which improves the distillation process between teacher and student networks when there is a high variance among multiple classes or objects. Integrated multi-scale feature matching strategy to utilise a mixture of multi-level knowledge from the feature pyramid of the two networks, intuitively helping in detecting anomalies of varying sizes which is also an inherent problem in the multi-class scenario. Briefly, our DCAM module consists of Convolutional Attention blocks distributed across the feature maps of the student network, which essentially learns to masks the irrelevant information during student learning alleviating the “cross-class interference” problem. This process is accompanied by minimizing the relative entropy using KL-Divergence in Spatial dimension and a Channel-wise Cosine Similarity between the same feature maps of teacher and student. The losses contributes to achieve scale-invariance and capture non-linear relationships. We also highlight that the DCAM module would only be used during training and not during inference as we only need the learned feature maps and losses for anomaly scoring and hence, gaining a performance gain of 3.92% than the multi-class baseline with a preserved latency.
V. Saini, U. Shaw, P. Jain and A. S. Raihal—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications (2019). https://doi.org/10.5220/0007364503720380
Jezek, S., Jonak, M., Burget, R., Dvorak, P., Skotak, M.: Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. In: 2021 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 66–71 (2021). https://doi.org/10.1109/ICUMT54235.2021.9631567
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021). https://doi.org/10.1145/3439950
Prasad, N.R., Almanza-Garcia, S., Lu, T.T.: Anomaly detection. Comput. Mater. Continua 14(1), 1–22 (2009). https://doi.org/10.3970/cmc.2009.014.001. http://www.techscience.com/cmc/v14n1/22504
Saberironaghi, A., Ren, J., El-Gindy, M.: Defect detection methods for industrial products using deep learning techniques: a review. Algorithms 16(2) (2023). https://doi.org/10.3390/a16020095. https://www.mdpi.com/1999-4893/16/2/95
Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)
Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35
Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)
Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)
Zhao, Y.: Just noticeable learning for unsupervised anomaly localization and detection. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)
You, Z., et al.: A unified model for multi-class anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 4571–4584 (2022)
Zhao, Y.: Omnial: a unified CNN framework for unsupervised anomaly localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3924–3933 (2023)
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)
Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9737–9746 (2022)
Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for anomaly detection. arXiv preprint arXiv:2103.04257 (2021)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vision 129(4), 1038–1059 (2021)
Deng, H., Li, X.: Structural teacher-student normality learning for multi-class anomaly detection and localization (2024)
Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 588–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_34
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Dubey, V., Saxena, A.: A cosine-similarity mutual-information approach for feature selection on high dimensional datasets. J. Inf. Technol. Res. 10, 15–28 (2017). https://doi.org/10.4018/JITR.2017010102
Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 392–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_23
Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer network for image anomaly detection and localization. In: 30th IEEE/IES International Symposium on Industrial Electronics (ISIE) (2021)
Acknowledgement
This work is supported by Hitachi India Pvt. Ltd. Four of the student authors were part of an academic course (CS671)-Deep Learning, instructed by Dr. Aditya Nigam, Associate Professor at Indian Institute of Technology Mandi, India.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jena, S. et al. (2025). Attend, Distill, Detect: Attention-Aware Entropy Distillation for Anomaly Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15305. Springer, Cham. https://doi.org/10.1007/978-3-031-78169-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-78169-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78168-1
Online ISBN: 978-3-031-78169-8
eBook Packages: Computer ScienceComputer Science (R0)