Nothing Special   »   [go: up one dir, main page]

Skip to main content

ASwin-YOLO: Attention – Swin Transformers in YOLOv7 for Air-to-Air Unmanned Aerial Vehicle Detection

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15305))

Included in the following conference series:

  • 199 Accesses

Abstract

With the evolution of deep learning architectures, object detection has seen exponential improvement in terms of accuracy and precision. However, their performance is not yet satisfactory for different applications, and a constant effort in this direction is widely sought after. The rise in unmanned aerial vehicle (UAV) infiltration inside strategic premises and inter-country boundaries has led to the need to detect these UAVs automatically. These UAVs are of very small size and have complex scenarios, resulting in reduced accuracies with existing architectures. In this work, Air-to-Air (A2A) micro-UAV images are considered for detection, and different improvements in the YOLOv7 architecture are presented. This work investigates the usage of the Swin transformer in the YOLOv7 framework and proposes a unified architecture to take advantage of both the attention and transformer mechanism in one. Accordingly, three different frameworks, AE-YOLO, Aswin-YOLO1, and ASwin-YOLO2 are proposed which are different variants of fusing attention and Swin transform block v2 in different configurations. The ASwin-YOLO2 shows the best performance among the three different configurations and uses Swin v2 such that the features are expanded and merged to yield better performance. The experimentations have been carried out over the DeTFly dataset which has micro-aerial vehicles in different complex scenarios and these algorithms are benchmarked in terms of their precision, recall, and mean average precision scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allouch, A., Koubaa, A., Khalgui, M., Abbes, T.: Qualitative and quantitative risk analysis and safety assessment of unmanned aerial vehicles missions over the internet. IEEE Access 7, 53392–53410 (2019). https://doi.org/10.1109/ACCESS.2019.2911980

    Article  Google Scholar 

  2. Yaacoub, J.-P., Noura, H., Salman, O., Chehab, A.: Security analysis of drones systems: attacks, limitations, and recommendations. Internet Things 11, 100218 (2020). https://doi.org/10.1016/j.iot.2020.100218

    Article  Google Scholar 

  3. Rahman, M.H., Sejan, M.A.S., Aziz, M.A., Tabassum, R., Baik, J.-I., Song, H.-K.: A comprehensive survey of unmanned aerial vehicles detection and classification using machine learning approach: challenges, solutions, and future directions. Remote Sens. 16(5), 879 (2024). https://doi.org/10.3390/rs16050879

    Article  Google Scholar 

  4. Zheng, Y., Chen, Z., Lv, D., Li, Z., Lan, Z., Zhao, S.: Air-to-air visual detection of micro-UAVs: an experimental evaluation of deep learning. IEEE Robot. Autom. Lett. 6(2), 1020–1027 (2021). https://doi.org/10.1109/LRA.2021.3056059

    Article  Google Scholar 

  5. Gonzalez, F., Caballero, R., Perez-Grau, F.J., Viguria, A.: Vision-based UAV detection for air-to-air neutralization. In: 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 236–241. IEEE (2021). https://doi.org/10.1109/SSRR53300.2021.9597861

  6. Dadboud, F., Patel, V., Mehta, V., Bolic, M., Mantegh, I.: Single-stage UAV detection and classification with YOLOV5: mosaic data augmentation and PANet. In: 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) , pp. 1–8. IEEE (2021). https://doi.org/10.1109/AVSS52988.2021.9663841

  7. Waseem, W.S., Ashraf, M., Shah, M.: Dogfight: detecting drones from drones videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7067–7076 (2021)

    Google Scholar 

  8. Sangam, T., Dave, I.R., Sultani, W., Shah, M.: TransVisDrone: spatio-temporal transformer for vision-based drone-to-drone detection in aerial videos. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 6006–6013. IEEE (2023). https://doi.org/10.1109/ICRA48891.2023.10161433

  9. Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3202–3211 (2022)

    Google Scholar 

  10. Cao, X., Zhang, Y., Lang, S., Gong, Y.: Swin-transformer-based YOLOv5 for small-object detection in remote sensing images. Sensors 23(7), 3634 (2023). https://doi.org/10.3390/s23073634

    Article  Google Scholar 

  11. Hendria, W.F., Phan, Q.T., Adzaka, F., Jeong, C.: Combining transformer and CNN for object detection in UAV imagery. ICT Express 9(2), 258–263 (2023). https://doi.org/10.1016/j.icte.2021.12.006

    Article  Google Scholar 

  12. Liu, J., Liu, S., Xu, S., Zhou, C.: Two-stage underwater object detection network using swin transformer. IEEE Access 10, 117235–117247 (2022). https://doi.org/10.1109/ACCESS.2022.3219592

    Article  Google Scholar 

  13. Yang, R., Zhang, J., Shang, X., Li, W.: Lightweight small target detection algorithm with multi-feature fusion. Electronics 12(12), 2739 (2023). https://doi.org/10.3390/electronics12122739

    Article  Google Scholar 

  14. Zhou, X., Yang, G., Chen, Y., Li, L., Chen, B.M.: VDTNet: a high-performance visual network for detecting and tracking of intruding drones. IEEE Trans. Intell. Transp. Syst. 8, 1–12 (2024). https://doi.org/10.1109/TITS.2024.3350920

    Article  Google Scholar 

  15. Kaur, D., Battish, N., Bhavsar, A., Poddar, S.: YOLOv7E: an attention-based improved YOLOv7 for the detection of unmanned aerial vehicles. In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods, pp. 344–351. SCITEPRESS - Science and Technology Publications (2024). https://doi.org/10.5220/0012391500003654

  16. Zhou, J., Yang, D., Song, T., Ye, Y., Zhang, X., Song, Y.: Improved YOLOv7 models based on modulated deformable convolution and swin transformer for object detection in fisheye images. Image Vis. Comput. 144, 104966 (2024). https://doi.org/10.1016/j.imavis.2024.104966

    Article  Google Scholar 

  17. Kim, J.-H., Kim, N., Won, C.S.: High-speed drone detection based on Yolo-V8. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–2. IEEE (2023). https://doi.org/10.1109/ICASSP49357.2023.10095516

  18. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). https://arxiv.org/abs/2207.02696

  19. Bai, Z., Pei, X., Qiao, Z., Wu, G., Bai, Y.: Improved YOLOv7 target detection algorithm based on UAV aerial photography. Drones 8(3), 104 (2024). https://doi.org/10.3390/drones8030104

    Article  Google Scholar 

  20. Li, X., Wei, Y., Li, J., Duan, W., Zhang, X., Huang, Y.: Improved YOLOv7 algorithm for small object detection in unmanned aerial vehicle image scenarios. Appl. Sci. 14(4), 1664 (2024). https://doi.org/10.3390/app14041664

    Article  Google Scholar 

  21. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). http://arxiv.org/abs/1409.0473

  22. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00745

  23. Park, J., Woo, S., Lee, J.-Y., Kweon, I.S.: BAM: bottleneck attention module (2018). http://arxiv.org/abs/1807.06514

  24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  25. Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network. In: Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 1161–1177 (2022)

    Google Scholar 

  26. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1534–11542 (2020)

    Google Scholar 

  27. Liu, Y., Li, Q., Yuan, Y., Du, Q., Wang, Q.: ABNet: adaptive balanced network for multiscale object detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022). https://doi.org/10.1109/TGRS.2021.3133956

    Article  Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. Comput. Lang. (2017). http://arxiv.org/abs/1706.03762

  29. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. Comput. Vis. Pattern Recognit. (2020). http://arxiv.org/abs/2010.11929

  30. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00986

  31. Liu, Z., et al.: Swin transformer V2: scaling up capacity and resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11999–12009. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01170

  32. Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network, pp. 541–557 (2023). https://doi.org/10.1007/978-3-031-26313-2_33

  33. Walter, V., Vrba, M., Saska, M.: On training datasets for machine learning-based visual relative localization of micro-scale UAVs. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10674–10680. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9196947

  34. Cheng, Q., Wang, Y., He, W., Bai, Y.: Lightweight air-to-air unmanned aerial vehicle target detection model. Sci. Rep. 14(1), 2609 (2024). https://doi.org/10.1038/s41598-024-53181-2

    Article  Google Scholar 

Download references

Acknowledgement

The Author would like to thank TiHAN-IITH and C3ihub-IITK for their support through project funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, D., Battish, N., Akanksha, Poddar, S. (2025). ASwin-YOLO: Attention – Swin Transformers in YOLOv7 for Air-to-Air Unmanned Aerial Vehicle Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15305. Springer, Cham. https://doi.org/10.1007/978-3-031-78169-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78169-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78168-1

  • Online ISBN: 978-3-031-78169-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics