Nothing Special   »   [go: up one dir, main page]

Skip to main content

ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2024)

Abstract

E-commerce platforms require structured product data in the form of attribute-value pairs to offer features such as faceted product search or attribute-based product comparison. However, vendors often provide unstructured product descriptions, necessitating the extraction of attribute-value pairs from these texts. BERT-based extraction methods require large amounts of task-specific training data and struggle with unseen attribute values. This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative. We propose prompt templates for zero-shot and few-shot scenarios, comparing textual and JSON-based target schema representations. Our experiments show that GPT-4 achieves the highest average F1-score of 85% using detailed attribute descriptions and demonstrations. Llama-3-70B performs nearly as well, offering a competitive open-source alternative. GPT-4 surpasses the best PLM baseline by 5% in F1-score. Fine-tuning GPT-3.5 increases the performance to the level of GPT-4 but reduces the model’s ability to generalize to unseen attribute values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/wbsg-uni-mannheim/ExtractGPT.

  2. 2.

    https://github.com/xinyangz/OAMine/tree/main/data.

  3. 3.

    https://raw.githubusercontent.com/lanmanok/ACL19_Scaling_Up_Open_Tagging/master/publish_data.txt.

  4. 4.

    https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.

  5. 5.

    https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct.

  6. 6.

    https://json-schema.org/.

  7. 7.

    https://platform.openai.com/docs/guides/embeddings/.

  8. 8.

    https://openai.com/pricing.

  9. 9.

    https://platform.openai.com/docs/guides/fine-tuning.

  10. 10.

    https://github.com/hackerxiaobai/OpenTag_2019/tree/master.

  11. 11.

    https://github.com/google-research/google-research/tree/master/mave.

References

  1. Brinkmann, A., Baumann, N., Bizer, C.: Using LLMs for the extraction and normalization of product attribute values. In: ADBIS, pp. 217–230 (2024)

    Google Scholar 

  2. Brown, T., Mann, B., Ryder, N., et al.: Language models are few-shot learners. In: NeurIPS, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  3. Chen, W.T., Shinzato, K., Yoshinaga, N., et al.: Does named entity recognition truly not scale up to real-world product attribute extraction? In: EMNLP, pp. 152–159 (2023)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  5. Dubey, A., Jauhri, A., Pandey, A., et al.: The LLaMA 3 herd of models (2024). arXiv:2407.21783 [cs]

  6. Fang, C., Li, X., Fan, Z., et al.: LLM-Ensemble: optimal large language model ensemble method for e-commerce product attribute value extraction (2024). arXiv:2403.00863 [cs]

  7. Ghani, R., Probst, K., Liu, Y., et al.: Text mining for product attribute extraction. In: ACM SIGKDD Explorations Newsletter, vol. 8, pp. 41–48 (2006)

    Google Scholar 

  8. Goel, A., Gueta, A., Gilon, O., et al.: LLMs accelerate annotation for medical information extraction. In: ML4H, pp. 82–100 (2023)

    Google Scholar 

  9. Khorashadizadeh, H., Mihindukulasooriya, N., Tiwari, S., et al.: Exploring in-context learning capabilities of foundation models for generating knowledge graphs from text. In: TEXT2KG | BiKE, vol. 3447, pp. 132–153 (2023)

    Google Scholar 

  10. OpenAI: GPT-4 technical report (2023). arXiv:2303.08774 [cs]

  11. Ouyang, L., Wu, J., Jiang, X.: Training language models to follow instructions with human feedback. In: NeurIPS, vol. 35, pp. 27730–27744 (2022)

    Google Scholar 

  12. Parekh, T., Hsu, I.H., Huang, K.H., et al.: GENEVA: benchmarking generalizability for event argument extraction with hundreds of event types and argument roles. In: ACL, pp. 3664–3686 (2023)

    Google Scholar 

  13. Putthividhya, D., Hu, J.: Bootstrapped named entity recognition for product attribute extraction. In: EMNLP, pp. 1557–1567 (2011)

    Google Scholar 

  14. Ren, Z., He, X., Yin, D., et al.: Information discovery in e-commerce: half-day SIGIR 2018 tutorial. In: SIGIR, pp. 1379–1382 (2018)

    Google Scholar 

  15. Shinzato, K., Yoshinaga, N., Xia, Y., et al.: Simple and effective knowledge-driven query expansion for QA-based product attribute extraction. In: ACL, pp. 227–234 (2022)

    Google Scholar 

  16. Vandic, D., van Dam, J.W., Frasincar, F.: Faceted product search powered by the Semantic Web. Decis. Support Syst. 53(3), 425–437 (2012)

    Article  Google Scholar 

  17. Wang, Q., Yang, L., Kanagal, B., et al.: Learning to extract attribute value from product via question answering: a multi-task approach. In: SIGKDD, pp. 47–55 (2020)

    Google Scholar 

  18. Wang, Q., Yang, L., Wang, J., et al.: SMARTAVE: structured multimodal transformer for product attribute value extraction. In: EMNLP, pp. 263 – 276 (2022)

    Google Scholar 

  19. Wang, X., Li, S., Ji, H.: Code4Struct: code generation for few-shot event structure prediction. In: ACL, vol. 1, pp. 3640–3663 (2023)

    Google Scholar 

  20. Wei, J., Tay, Y., Bommasani, R., et al.: Emergent abilities of large language models. TMLR (2022)

    Google Scholar 

  21. Wong, Y.W., Widdows, D., Lokovic, T., et al.: Scalable attribute-value extraction from semi-structured text. In: ICDMW, pp. 302–307 (2009)

    Google Scholar 

  22. Xu, H., Wang, W., Mao, X., et al.: Scaling up open tagging from tens to thousands: comprehension empowered attribute value extraction from product title. In: ACL, pp. 5214–5223 (2019)

    Google Scholar 

  23. Yan, J., Zalmout, N., Liang, Y., et al.: AdaTag: multi-attribute value extraction from product profiles with adaptive decoding. In: ACL|IJCNLP, pp. 4694–4705 (2021)

    Google Scholar 

  24. Yang, L., Wang, Q., Wang, J., et al.: MixPAVE: mix-prompt tuning for few-shot product attribute value extraction. In: ACL, pp. 9978–9991 (2023)

    Google Scholar 

  25. Yang, L., Wang, Q., Yu, Z., et al.: MAVE: a product dataset for multi-source attribute value extraction. In: WSDM, pp. 1256–1265 (2022)

    Google Scholar 

  26. Zamfirescu-Pereira, J., Wong, R.Y., Hartmann, B., et al.: Why johnny can’t prompt: how non-AI experts try (and fail) to design LLM prompts. In: CHI, pp. 1–21 (2023)

    Google Scholar 

  27. Zhang, L., Zhu, M., Huang, W.: A framework for an ontology-based e-commerce product information retrieval system. JCP 4(6), 436–443 (2009)

    Google Scholar 

  28. Zhang, X., Zhang, C., Li, X., et al.: OA-Mine: open-world attribute mining for e-commerce products with weak supervision. In: WWW, pp. 3153–3161 (2022)

    Google Scholar 

  29. Zheng, G., Mukherjee, S., Dong, X.L., et al.: OpenTag: open attribute value extraction from product profiles. In: SIGKDD, pp. 1049–1058 (2018)

    Google Scholar 

  30. Zhu, T., Wang, Y., Li, H., et al.: Multimodal joint attribute prediction and value extraction for E-commerce product. In: EMNLP, pp. 2129–2139 (2020)

    Google Scholar 

  31. Zou, H.P., Samuel, V., Zhou, Y., et al.: ImplicitAVE: an open-source dataset and multimodal LLMs benchmark for implicit attribute value extraction (2024). arXiv:2404.15592 [cs]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Brinkmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brinkmann, A., Shraga, R., Bizer, C. (2025). ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction. In: Delir Haghighi, P., Greguš, M., Kotsis, G., Khalil, I. (eds) Information Integration and Web Intelligence. iiWAS 2024. Lecture Notes in Computer Science, vol 15342. Springer, Cham. https://doi.org/10.1007/978-3-031-78090-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78090-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78089-9

  • Online ISBN: 978-3-031-78090-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics