Nothing Special   »   [go: up one dir, main page]

Skip to main content

Statistical Layered MPC

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2024)

Abstract

The seminal work of Rabin and Ben-Or (STOC ’89) showed that the problem of secure n-party computation can be solved for \(t<n/2\) corruptions with guaranteed output delivery and statistical security. This holds in the traditional static model where the set of parties is fixed throughout the entire protocol execution.

The need to better capture the dynamics of large scale and long-lived computations, where compromised parties may recover and the set of parties can change over time, has sparked renewed interest in the proactive security model by Ostrovsky and Yung (PODC ’91). This abstraction, where the adversary may periodically uncorrupt and corrupt a new set of parties, is taken even a step further in the more recent YOSO and Fluid MPC models (CRYPTO ’21) which allow, in addition, disjoint sets of parties participating in each round. Previous solutions with guaranteed output delivery and statistical security only tolerate \(t<n/3\) corruptions, or assume a random corruption pattern plus non-standard communication models. Matching the Rabin and Ben-Or bound in these settings remains an open problem.

In this work, we settle this question considering the unifying Layered MPC abstraction recently introduced by David et al. (CRYPTO ’23). In this model, the interaction pattern is defined by a layered acyclic graph, where each party sends secret messages and broadcast messages only to parties in the very next layer. We complete the feasibility landscape of layered MPC, by extending the Rabin and Ben-Or result to this setting. Our results imply maximally-proactive MPC with statistical security in the honest-majority setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are faced with a dichotomy of languages: a VSS protocol can be thought of as a strong distributed commitment. From this perspective, the party providing input is a committer, producing commitments that can be opened. More often, the language of secret sharing is used. Here, the party providing input is a dealer, producing sharings that can be reconstructed. We oscillate between these two abstractions.

  2. 2.

    For simplicity, we consider the notion of “non-retroactive” (see [8], Definition 3) adaptive adversaries, who chooses at each round r a set of up to t parties from layer \(\mathcal {L}_{r}\) to corrupt. Since our protocols are information-theoretic, we conjecture that they are also secure against the stronger notion of retroactive-adaptive adversaries that can corrupt parties in previous layers.

References

  1. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press (1988)

    Google Scholar 

  3. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. Part I, volume 12550 of LNCS, pp. 260–290. Springer, Heidelberg (2020)

    Google Scholar 

  4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)

    Article  MathSciNet  Google Scholar 

  5. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

    Google Scholar 

  6. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (abstract) (informal contribution). In: Pomerance, C. (ed.) CRYPTO’87, volume 293 of LNCS, page 462. Springer, Heidelberg (1988)

    Google Scholar 

  7. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (1988)

    Google Scholar 

  8. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure multiparty computation with dynamic participants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_4

    Chapter  Google Scholar 

  9. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

    Google Scholar 

  10. David, B., et al.: Perfect MPC over layered graphs. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. Part I, volume 14081 of LNCS, pp. 360–392. Springer, Heidelberg (2023)

    Chapter  Google Scholar 

  11. Deligios, G., Goel, A., Liu-Zhang, C.D.: Maximally-fluid MPC with guaranteed output delivery. Cryptology ePrint Archive, Paper 2023/415 (2023). https://eprint.iacr.org/2023/415

  12. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_33

    Chapter  Google Scholar 

  13. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM (JACM) 40(1), 17–47 (1993)

    Article  MathSciNet  Google Scholar 

  14. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: 33rd ACM STOC, pp. 580–589. ACM Press (2001)

    Google Scholar 

  15. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Coan, B.A., Afek, Y., (eds.) 17th ACM PODC, pp. 101–111. ACM (1998)

    Google Scholar 

  16. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_3

    Chapter  Google Scholar 

  17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A., (eds.) 19th ACM STOC, pp. 218–229. ACM Press (1987)

    Google Scholar 

  18. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

    Article  MathSciNet  Google Scholar 

  19. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Hofheinz, D., Müller-Quade, J.: A synchronous model for multi-party computation and the incompleteness of oblivious transfer. In: Proceedings of FCS, pp. 117–130. Citeseer (2004)

    Google Scholar 

  21. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013)

    Google Scholar 

  22. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, pp.203–226. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  23. Liu-Zhang, C.-D., Maurer, U.: Synchronous constructive cryptography. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. Part II, volume 12551 of LNCS, pp. 439–472. Springer, Heidelberg (2020)

    Google Scholar 

  24. Manurangsi, P., Srinivasan, A., Vasudevan, P.N.: Nearly optimal robust secret sharing against rushing adversaries. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. Part III, volume 12172 of LNCS, pp. 156–185. Springer, Heidelberg (2020)

    Google Scholar 

  25. Nielsen, J.B.: On protocol security in the cryptographic model. BRICS (2003)

    Google Scholar 

  26. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Luigi L., (ed.) 10th ACM PODC, pp. 51–59. ACM (1991)

    Google Scholar 

  27. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press (1989)

    Google Scholar 

  28. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  29. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Deligios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deligios, G., Konring, A., Liu-Zhang, CD., Narayanan, V. (2025). Statistical Layered MPC. In: Boyle, E., Mahmoody, M. (eds) Theory of Cryptography. TCC 2024. Lecture Notes in Computer Science, vol 15367. Springer, Cham. https://doi.org/10.1007/978-3-031-78023-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78023-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78022-6

  • Online ISBN: 978-3-031-78023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics