Nothing Special   »   [go: up one dir, main page]

Skip to main content

How are LLMs Used for Conceptual Modeling? An Exploratory Study on Interaction Behavior and User Perception

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2024)

Abstract

Large Language Models (LLMs) have opened new opportunities in modeling in general, and conceptual modeling in particular. With their advanced reasoning capabilities, accessible through natural language interfaces, LLMs enable humans to deepen their understanding of different application domains and enhance their modeling skills. However, the open-ended nature of these interfaces results in diverse interaction behaviors, which may also affect the perceived usefulness of LLM-assisted conceptual modeling. Existing works focus on various quality metrics of LLM outcomes, yet limited attention is given to how users interact with LLMs for such modeling tasks. To address this gap, we present the design and findings of an empirical study conducted with information systems students. After labeling the interactions according to their intentions (e.g., Create Model, Discuss, or Present), and representing them as an event log, we applied process mining techniques to discover process models. These models vividly capture the interaction behaviors and reveal recurrent patterns. We explored the differences in interacting with two LLMs (GPT 4.0 and Code Llama) for two modeling tasks (use case and domain modeling) across three application domains. Additionally, we analyzed user perceptions regarding the usefulness and ease of use of LLM-assisted conceptual modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have no dedicated sub-question regarding differences related to the modeling tasks, as the participants could work on them interwinedly.

  2. 2.

    https://www.meta.ai/.

  3. 3.

    https://llama.meta.com/code-llama/.

  4. 4.

    1 token \(\approx \) 0.75 words.

  5. 5.

    Online supplementary material: https://zenodo.org/records/13513891.

  6. 6.

    https://docs.streamlit.io/.

  7. 7.

    https://fluxicon.com/disco/.

  8. 8.

    https://www.vellum.ai/llm-leaderboard, last accessed: 25.05.2024.

References

  1. Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  2. Alex, N., et al.: Raft: a real-world few-shot text classification benchmark. arXiv preprint arXiv:2109.14076 (2021)

  3. Arulmohan, S., Meurs, M.J., Mosser, S.: Extracting domain models from textual requirements in the era of large language models. In: 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 580–587. IEEE (2023)

    Google Scholar 

  4. Brown, J.D.: The bonferroni adjustment. Statistics 12(1), 23–27 (2008)

    Google Scholar 

  5. Cámara, J., Troya, J., Burgueño, L., Vallecillo, A.: On the assessment of generative AI in modeling tasks: an experience report with ChatGPT and UML. Softw. Syst. Model. 22(3), 781–793 (2023)

    Article  Google Scholar 

  6. Chaaben, M.B., Burgueño, L., Sahraoui, H.A.: Towards using few-shot prompt learning for automating model completion. In: 45th IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Results, NIER@ICSE, pp. 7–12. IEEE (2023)

    Google Scholar 

  7. Chen, B., et al.: On the use of GPT-4 for creating goal models: an exploratory study. In: 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW), pp. 262–271. IEEE (2023)

    Google Scholar 

  8. Chen, K., Yang, Y., Chen, B., López, J.A.H., Mussbacher, G., Varró, D.: Automated domain modeling with large language models: a comparative study. In: 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 162–172. IEEE (2023)

    Google Scholar 

  9. Chen, X., et al.: How robust is GPT-3.5 to predecessors? A comprehensive study on language understanding tasks. arXiv preprint arXiv:2303.00293 (2023)

  10. Druckman, J.N., Kam, C.D.: Students as experimental participants. In: Cambridge Handbook of Experimental Political Science, vol. 1, pp. 41–57 (2011)

    Google Scholar 

  11. Du, X., et al.: Evaluating large language models in class-level code generation. In: 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE), pp. 865–865. IEEE Computer Society (2024)

    Google Scholar 

  12. Fill, H.G., Fettke, P., Köpke, J.: Conceptual modeling and large language models: impressions from first experiments with ChatGPT. Enterp. Model. Inf. Syst. Architect. (EMISAJ) 18, 1–15 (2023)

    Google Scholar 

  13. Giglou, H.B., D’Souza, J., Auer, S.: LLMs4OL: large language models for ontology learning. In: Payne, T.R., et al. (eds.) ISWC 2023, Part I. LNCS, vol. 14265, pp. 408–427. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47240-4_22

    Chapter  Google Scholar 

  14. Grattafiori, W.X., et al.: Code llama: open foundation models for code. arXiv preprint arXiv:2308.12950 (2023)

  15. Hou, Y., et al.: Large language models are zero-shot rankers for recommender systems. In: Goharian, N., et al. (eds.) ECIR 2024. LNCS, vol. 14609, pp. 364–381. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56060-6_24

    Chapter  Google Scholar 

  16. Izadi, M., Katzy, J., van Dam, T., Otten, M., Popescu, R.M., van Deursen, A.: Language models for code completion: a practical evaluation. arXiv preprint arXiv:2402.16197 (2024)

  17. Kanuka, H., Koreki, G., Soga, R., Nishikawa, K.: Exploring the chatgpt approach for bidirectional traceability problem between design models and code. arXiv preprint arXiv:2309.14992 (2023)

  18. Kocmi, T., Federmann, C.: Large language models are state-of-the-art evaluators of translation quality. arXiv preprint arXiv:2302.14520 (2023)

  19. Liu, J., Liu, C., Lv, R., Zhou, K., Zhang, Y.: Is chatgpt a good recommender? A preliminary study. arXiv preprint arXiv:2304.10149 (2023)

  20. MacFarland, T.W., Yates, J.M.: Kruskal–Wallis H-test for oneway analysis of variance (ANOVA) by ranks. In: Introduction to Nonparametric Statistics for the Biological Sciences Using R, pp. 177–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30634-6_6

    Chapter  Google Scholar 

  21. Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., Yang, D.: Is chatgpt a general-purpose natural language processing task solver? arXiv preprint arXiv:2302.06476 (2023)

  22. Ruan, K., Chen, X., Jin, Z.: Requirements modeling aided by chatgpt: an experience in embedded systems. In: 31st IEEE International Requirements Engineering Conference, RE 2023 - Workshops, pp. 170–177. IEEE (2023)

    Google Scholar 

  23. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  24. Van Veen, D., et al.: Clinical text summarization: adapting large language models can outperform human experts. Research Square (2023). https://doi.org/10.48550/ARXIV.2309.07430

  25. White, J., et al.: A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382 (2023)

  26. White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D.C.: Chatgpt prompt patterns for improving code quality, refactoring, requirements elicitation, and software design. arXiv preprint arXiv:2303.07839 (2023)

  27. Zhang, B., Haddow, B., Birch, A.: Prompting large language model for machine translation: a case study. In: International Conference on Machine Learning, pp. 41092–41110. PMLR (2023)

    Google Scholar 

  28. Zhang, T., Ladhak, F., Durmus, E., Liang, P., McKeown, K., Hashimoto, T.B.: Benchmarking large language models for news summarization. Trans. Assoc. Comput. Linguist. 12, 39–57 (2024)

    Article  Google Scholar 

  29. Zhao, W.X., et al.: A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Juned Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S.J., Reinhartz-Berger, I., Bork, D. (2025). How are LLMs Used for Conceptual Modeling? An Exploratory Study on Interaction Behavior and User Perception. In: Maass, W., Han, H., Yasar, H., Multari, N. (eds) Conceptual Modeling. ER 2024. Lecture Notes in Computer Science, vol 15238. Springer, Cham. https://doi.org/10.1007/978-3-031-75872-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75872-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75871-3

  • Online ISBN: 978-3-031-75872-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics