Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Importance to Explain Multimodal Prediction Models. a Clinical Use Case

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Surgery to treat elderly hip fracture patients may cause complications that can lead to early mortality. An early warning system for complications could provoke clinicians to monitor high-risk patients more carefully and address potential complications early, or inform the patient. In this work, we develop a multimodal deep-learning model for post-operative mortality prediction using pre-operative and per-operative data from elderly hip fracture patients. Specifically, we include static patient data, hip and chest images before surgery in pre-operative data, vital signals, and medications administered during surgery in per-operative data. We extract features from image modalities using ResNet and from vital signals using LSTM. Explainable model outcomes are essential for clinical applicability, therefore we compute Shapley values to explain the predictions of our multimodal black box model. We find that i) Shapley values can be used to estimate the relative contribution of each modality both locally and globally, and ii) a modified version of the chain rule can be used to propagate Shapley values through a sequence of models supporting interpretable local explanations. Our findings imply that a multimodal combination of black box models can be explained by propagating Shapley values through the model sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We used the scikit-learn implementation https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html.

  2. 2.

    In the early stages of development, we observed that our models suffered from the “dying ReLu” problem, therefore we chose to employ leaky-ReLu instead of the regular ReLu activation function for all our fully connected layers [1].

  3. 3.

    In preliminary experiments we investigated ordinal and temporal encoding for the per-operative medication data but did not find a difference in performance.

  4. 4.

    https://github.com/jornjan/mmshap-XAI2024.

  5. 5.

    SHAP library https://github.com/slundberg/shap.

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2019)

  2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015). https://doi.org/10.1371/journal.pone.0130140

    Article  Google Scholar 

  3. Briganti, G., Le Moine, O.: Artificial intelligence in medicine: today and tomorrow. Front. Med. 7 (2020)

    Google Scholar 

  4. Cai, L., Gao, J., Zhao, D.: A review of the application of deep learning in medical image classification and segmentation. Annal. Transl. Med. 8(11), 713–713 (2020). https://doi.org/10.21037/atm.2020.02.44

  5. Cao, Y., et al.: Predictive values of preoperative characteristics for 30-day mortality in traumatic hip fracture patients. J. Pers. Med. 11(5), 353 (2021). https://doi.org/10.3390/jpm11050353

  6. Chen, H., Lundberg, S.M., Lee, S.I.: Explaining a series of models by propagating Shapley values. Nat. Commun. 13(1), 4512 (2022). https://doi.org/10.1038/s41467-022-31384-3

  7. Das, A., Rad, P.: Opportunities and challenges in explainable artificial Intelligence (XAI): a survey. arXiv preprint arXiv:2006.11371 (2020)

  8. de Munter, L., Polinder, S., Lansink, K.W.W., Cnossen, M.C., Steyerberg, E.W., de Jongh, M.A.C.: Mortality prediction models in the general trauma population: a systematic review. Injury 48(2), 221–229 (2017). https://doi.org/10.1016/j.injury.2016.12.009

    Article  Google Scholar 

  9. Fritz, B.A., et al.: Deep-learning model for predicting 30-day postoperative mortality. Br. J. Anaesth. 123(5), 688–695 (2019). https://doi.org/10.1016/j.bja.2019.07.025

  10. Gowd, A.K., et al.: Construct validation of machine learning in the prediction of short-term postoperative complications following total shoulder arthroplasty. J. Shoulder Elbow Surg. 28(12), e410–e421 (2019). https://doi.org/10.1016/j.jse.2019.05.017

  11. Gullberg, B., Johnell, O., Kanis, J.: World-wide projections for hip fracture. Osteoporos. Int. 7(5), 407–413 (1997). https://doi.org/10.1007/PL00004148

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).https://doi.org/10.1109/CVPR.2016.90

  13. Hu, F., Jiang, C., Shen, J., Tang, P., Wang, Y.: Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43(6), 676–685 (2012). https://doi.org/10.1016/j.injury.2011.05.017

    Article  Google Scholar 

  14. Jones, H.J., de Cossart, L.: Risk scoring in surgical patients. Br. J. Surg. 86(2), 149–157 (1999). https://doi.org/10.1046/j.1365-2168.1999.01006.x

    Article  Google Scholar 

  15. Junaid, M., Ali, S., Eid, F., El-Sappagh, S., Abuhmed, T.: Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease. Comput. Methods Prog. Biomed. 234, 10749 (2023). https://doi.org/10.1016/j.cmpb.2023.107495

  16. Karim, F., Majumdar, S., Darabi, H.: Insights into LSTM fully convolutional networks for time series classification. IEEE Access 7, 67718–67725 (2019). https://doi.org/10.1109/ACCESS.2019.2916828

  17. Karres, J., Kieviet, N., Eerenberg, J.P., Vrouenraets, B.C.: Predicting early mortality after hip fracture surgery: the hip fracture estimator of mortality Amsterdam. J. Orthop. Trauma 32(1), 27–33 (2018). https://doi.org/10.1097/BOT.0000000000001025

    Article  Google Scholar 

  18. King, G., Zeng, L.: Logistic regression in rare events data. Politic. Anal. 9(2), 137–163 (2001).https://doi.org/10.1093/oxfordjournals.pan.a004868

  19. Lee, C.K., Hofer, I., Gabel, E., Baldi, P., Cannesson, M.: Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology 129(4), 649–662 (2018). https://doi.org/10.1097/ALN.0000000000002186

    Article  Google Scholar 

  20. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  21. Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., Sun, C.: Attention bottlenecks for multimodal fusion. In: Advances in Neural Information Processing Systems, vol. 34, pp. 14200–14213. Curran Associates, Inc. (2021)

    Google Scholar 

  22. Nijmeijer, W.S., Folbert, E.C., Vermeer, M., Slaets, J.P., Hegeman, J.H.: Prediction of early mortality following hip fracture surgery in frail elderly: the Almelo hip fracture score (AHFS). Injury 47(10), 2138–2143 (2016). https://doi.org/10.1016/j.injury.2016.07.022

    Article  Google Scholar 

  23. Pawar, U., O’Shea, D., Rea, S., O’Reilly, R.: Explainable AI in Healthcare. In: 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), pp. 1–2 (2020). https://doi.org/10.1109/CyberSA49311.2020.9139655

  24. Perng, J.W., Kao, I.H., Kung, C.T., Hung, S.C., Lai, Y.H., Su, C.M.: Mortality prediction of septic patients in the emergency department based on machine learning. J. Clin. Med. 8(11), 1906 (2019). https://doi.org/10.3390/jcm8111906

    Article  Google Scholar 

  25. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inform. 69, 218–229 (2017). https://doi.org/10.1016/j.jbi.2017.04.001

    Article  Google Scholar 

  26. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135–1144. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939778

  27. Schoenfeld, A.J., et al.: Assessing the utility of a clinical prediction score regarding 30-day morbidity and mortality following metastatic spinal surgery: the New England Spinal Metastasis Score (NESMS). The Spine J. 16(4), 482–490 (2016). https://doi.org/10.1016/j.spinee.2015.09.043

  28. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997). https://doi.org/10.1109/78.650093

    Article  Google Scholar 

  29. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  30. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

    Google Scholar 

  31. Tonekaboni, S., Joshi, S., McCradden, M.D., Goldenberg, A.: What clinicians want: contextualizing explainable machine learning for clinical end use. In: Proceedings of the 4th Machine Learning for Healthcare Conference, pp. 359–380. PMLR (2019)

    Google Scholar 

  32. Wang, W., Krishnan, E.: Big data and clinicians: a review on the state of the science. JMIR Med. Inf. 2(1), e1 (2014).https://doi.org/10.2196/medinform.2913

  33. Xue, B., et al.: Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw. Open 4(3), e212240 (2021). https://doi.org/10.1001/jamanetworkopen.2021.2240

  34. Yenidogan, B., Pathak, S., Geerdink, J., Hegeman, J.H., van Keulen, M.: Multimodal machine learning for 30-days post-operative mortality prediction of elderly hip fracture patients. In: 2021 International Conference on Data Mining Workshops (ICDMW), pp. 508–516 (2021).https://doi.org/10.1109/ICDMW53433.2021.00068

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorn-Jan van de Beld .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

Christin Seifert is a member of the XAI 2024 World Conference committee. All other authors have no competing interests to declare that are relevant to the content of this article.

Appendices

A Hyperparameters

See Table 5.

Table 5. Hyperparameters for each model: Learning Rate (LR)

B Detailed Feature Overview

See Tables 6 and 7.

Table 6. Available pre-operative features grouped by category

Lab results

Medication (reason/effect)

Comorbidities

HB

Blood thinners

Chronic pulmonary disease

HT

Vitamin D

Congestive heart failure

CRP

Polypharmacy

Peripheral vascular disease

LEUC

A02 (acid related disorders)

Cerebrovascular disease

THR

A10 (diabetes)

Dementia

BLGR

B01 (antithrombotic)

Renal disease

IRAI

B02 (antihemmorrhagics)

Rheumatological disease

ALKF

B03 (antianemic)

Cancer

GGT

C01 (cardiac therapy)

Cerebrovascular event

ASAT

C03 (diuretics)

Liver disease

ALAT

C07 (beta blockers)

Lymphoma

LDH1

C08 (calcium channel blockers)

Leukemia

UREU

C09 (renin-angiotensin system)

Peptic ulcer disease

KREA

C10 (lipid modification)

Diabetes

GFRM

L04 (immunosuppressants)

Prior myocardial infarction

NA

M01 (anti-inflammatory)

 

XKA

N05 (psycholeptics)

 

GLUCGLUC

R03 (airway obstruction)

 
Table 7. List of medications that were at least administered in 100 unique cases, also includes the general reason for usage. Percentages are with respect to a total of 1616 cases for which medication data is available.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van de Beld, JJ., Pathak, S., Geerdink, J., Hegeman, J.H., Seifert, C. (2024). Feature Importance to Explain Multimodal Prediction Models. a Clinical Use Case. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2156. Springer, Cham. https://doi.org/10.1007/978-3-031-63803-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63803-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63802-2

  • Online ISBN: 978-3-031-63803-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics