Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ensuring Safe Social Navigation via Explainable Probabilistic and Conformal Safety Regions

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

The recent advancements of Artificial Intelligence (AI) have generated a lot of interest in the robotics community. Indeed, AI can find application in a wide variety of problems. Among these, social navigation of mobile robots is a big challenge, where ensuring non-harmful behaviors of the robotic system is fundamental.

In this paper, we consider a simulated navigation problem that involves a fleet of mobile agents moving in a cross scenario, governed by a human-like behavior. With the purpose of avoiding collisions among them, we show how safe and explainable AI (XAI) methods can constitute useful tools to tailor the parameters of the behavior towards a safe, collision-free, navigation. We first explore how global native rule-based classification provides interpretable characterizations of the agents’ behavior. Afterwards, we derive safety regions, \(\mathcal {S}_{\varepsilon }\), denoting the zones in the parameters space where collisions are avoided, with a maximum error given by \(\varepsilon \). The design of the regions is based on scalable classifiers, a technique to tune the decision function of a machine learning (ML) classifier so to bound its error on a desired class to a predefined level, combined with either probabilistic scaling (probabilistic safety regions, PSR), or with conformal prediction theory (conformal safety regions, CSR). Finally, we investigate how explainability can be provided to these regions by extracting local rules from their boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.rulex.ai/.

  2. 2.

    https://github.com/scikit-learn-contrib/skope-rules.

  3. 3.

    Navigation Playground, see https://idsia-robotics.github.io/navground/.

  4. 4.

    https://github.com/saranrt95/ExplainableSafetyRegions.

  5. 5.

    https://www.thymio.org.

  6. 6.

    We remind that the error of a rule corresponds to its false positive rate, where the positive class is intended as the one predicted by the rule (see Eq. 13). Hence, in our case, the error refers to the percentage of collisions wrongly classified as non-collisions.

References

  1. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification (2021). arXiv preprint arXiv:2107.07511

  2. Brunke, L., et al.: Safe learning in robotics: from learning-based control to safe reinforcement learning. Annu. Rev. Control Robot. Auton. Syst. 5, 411–444 (2022)

    Article  Google Scholar 

  3. Carlevaro, A., Alamo, T., Dabbene, F., Mongelli, M.: Probabilistic safety regions via finite families of scalable classifiers (2023). arXiv preprint arXiv:2309.04627

  4. Carlevaro, A., Cantarero, T.A., Dabbene, F., Mongelli, M.: Conformal predictions for probabilistically robust scalable machine learning classification (2024). arXiv preprint arXiv:2403.10368

  5. Cebollada, S., Payá, L., Flores, M., Peidró, A., Reinoso, O.: A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data. Expert Syst. Appl. 167, 114195 (2021)

    Article  Google Scholar 

  6. Choi, H., et al.: On the use of simulation in robotics: opportunities, challenges, and suggestions for moving forward. Proc. Natl. Acad. Sci. 118(1), e1907856118 (2021)

    Article  Google Scholar 

  7. D, F.L., E, G.G.: Trustworthy autonomous vehicles. Scientific analysis or review, Anticipation and foresight, Technical guidance KJ-NA-30942-EN-N (online), Luxembourg (Luxembourg) (2021). https://doi.org/10.2760/120385(online)

  8. Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 1–33 (2023)

    Article  Google Scholar 

  9. Emaminejad, N., Akhavian, R.: Trustworthy AI and robotics: implications for the AEC industry. Autom. Constr. 139, 104298 (2022)

    Article  Google Scholar 

  10. Everett, M., Chen, Y.F., How, J.P.: Collision avoidance in pedestrian-rich environments with deep reinforcement learning. IEEE Access 9, 10357–10377 (2021). https://doi.org/10.1109/ACCESS.2021.3050338

    Article  Google Scholar 

  11. Fan, T., Long, P., Liu, W., Pan, J.: Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. Int. J. Robot. Res. 39(7), 856–892 (2020)

    Article  Google Scholar 

  12. Ferrari, E., Verda, D., Pinna, N., Muselli, M.: A novel rule-based modeling and control approach for the optimization of complex water distribution networks. In: Advances in System-Integrated Intelligence: Proceedings of the 6th International Conference on System-Integrated Intelligence (SysInt 2022), September 7-9, 2022, Genova, Italy. pp. 33–42. Springer (2022). https://doi.org/10.1007/978-3-031-16281-7_4

  13. Fontana, M., Zeni, G., Vantini, S.: Conformal prediction: a unified review of theory and new challenges. Bernoulli 29(1), 1–23 (2023)

    Article  MathSciNet  Google Scholar 

  14. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles (2008)

    Google Scholar 

  15. Fu, Y., Li, C., Yu, F.R., Luan, T.H., Zhang, Y.: A survey of driving safety with sensing, vehicular communications, and artificial intelligence-based collision avoidance. IEEE Trans. Intell. Transp. Syst. 23(7), 6142–6163 (2021)

    Article  Google Scholar 

  16. Guzzi, J., Giusti, A., Gambardella, L.M., Theraulaz, G., Di Caro, G.A.: Human-friendly robot navigation in dynamic environments. In: 2013 IEEE international conference on robotics and automation, pp. 423–430. IEEE (2013)

    Google Scholar 

  17. Hassija, V., et al.: Interpreting black-box models: a review on explainable artificial intelligence. Cogn. Comput. 16(1), 45–74 (2024)

    Article  Google Scholar 

  18. High-Level Expert Group on AI: Ethics guidelines for trustworthy AI. Report, European Commission, Brussels (2019). https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

  19. Hu, Y., Wang, Y., Hu, K., Li, W.: Adaptive obstacle avoidance in path planning of collaborative robots for dynamic manufacturing. J. Intell. Manuf. 34(2), 789–807 (2023)

    Article  Google Scholar 

  20. https://2018.ds3-datascience-polytechnique.fr/wp-content/uploads/2018/06/DS3-309.pdf

  21. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance (2017). arXiv preprint arXiv:1702.01182

  22. Kim, Youngmin, Allmendinger, Richard, López-Ibáñez, Manuel: Safe learning and optimization techniques: towards a survey of the state of the art. In: Heintz, Fredrik, Milano, Michela, O’Sullivan, Barry (eds.) TAILOR 2020. LNCS (LNAI), vol. 12641, pp. 123–139. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-73959-1_12

  23. Liu, Y., et al.: Trustworthy LLMs: a survey and guideline for evaluating large language models’ alignment (2023)

    Google Scholar 

  24. Longo, L., et al.: Explainable artificial intelligence (XAI) 2.0: a manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 102301 (2024)

    Google Scholar 

  25. Luo, W., Sun, W., Kapoor, A.: Multi-robot collision avoidance under uncertainty with probabilistic safety barrier certificates. Adv. Neural. Inf. Process. Syst. 33, 372–383 (2020)

    Google Scholar 

  26. Lütjens, B., Everett, M., How, J.P.: Safe reinforcement learning with model uncertainty estimates. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8662–8668. IEEE (2019)

    Google Scholar 

  27. Mackowiak, R., Ardizzone, L., Kothe, U., Rother, C.: Generative classifiers as a basis for trustworthy image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2971–2981 (2021)

    Google Scholar 

  28. Mahdi, H., Akgun, S.A., Saleh, S., Dautenhahn, K.: A survey on the design and evolution of social robots-past, present and future. Robot. Auton. Syst. 156, 104193 (2022)

    Article  Google Scholar 

  29. Mammarella, M., Mirasierra, V., Lorenzen, M., Alamo, T., Dabbene, F.: Chance-constrained sets approximation: a probabilistic scaling approach. Automatica 137, 110108 (2022)

    Article  MathSciNet  Google Scholar 

  30. Moldovan, T.M., Abbeel, P.: Safe exploration in markov decision processes (2012). arXiv preprint arXiv:1205.4810

  31. Molnar, C.: Interpretable machine learning. Lulu. com (2020)

    Google Scholar 

  32. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  33. Muselli, M.: Switching neural networks: a new connectionist model for classification (2005). https://doi.org/10.1007/11731177_4

    Article  Google Scholar 

  34. Narteni, S., Orani, V., Cambiaso, E., Rucco, M., Mongelli, M.: On the intersection of explainable and reliable AI for physical fatigue prediction. IEEE Access 10, 76243–76260 (2022). https://doi.org/10.1109/ACCESS.2022.3191907

    Article  Google Scholar 

  35. Narteni, S., Orani, V., Vaccari, I., Cambiaso, E., Mongelli, M.: Sensitivity of logic learning machine for reliability in safety-critical systems. IEEE Intell. Syst. 37(5), 66–74 (2022)

    Article  Google Scholar 

  36. Ravankar, A., Ravankar, A.A., Rawankar, A., Hoshino, Y.: Autonomous and safe navigation of mobile robots in vineyard with smooth collision avoidance. Agriculture 11(10), 954 (2021)

    Article  Google Scholar 

  37. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)

    Google Scholar 

  38. Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Rob. Syst. 16(2), 1729881419839596 (2019)

    Google Scholar 

  39. Santos, N.B., Bavaresco, R.S., Tavares, J.E., Ramos, G.d.O., Barbosa, J.L.: A systematic mapping study of robotics in human care. Robot. Auton. Syst. 144, 103833 (2021)

    Google Scholar 

  40. Soori, M., Arezoo, B., Dastres, R.: Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics (2023)

    Google Scholar 

  41. Sulaiman, A., et al.: Artificial intelligence-based secured power grid protocol for smart city. Sensors 23(19), 8016 (2023). https://doi.org/10.3390/s23198016

    Article  Google Scholar 

  42. Terra, A., Riaz, H., Raizer, K., Hata, A., Inam, R.: Safety vs. efficiency: Ai-based risk mitigation in collaborative robotics. In: 2020 6th International Conference on Control, Automation and Robotics (ICCAR), pp. 151–160 (2020). https://doi.org/10.1109/ICCAR49639.2020.9108037

  43. Theile, M., Bayerlein, H., Caccamo, M., Sangiovanni-Vincentelli, A.L.: Learning to recharge: UAV coverage path planning through deep reinforcement learning (2023)

    Google Scholar 

  44. Von Rueden, L., et al.: Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Trans. Knowl. Data Eng. 35(1), 614–633 (2021)

    Google Scholar 

  45. Xiao, X., Liu, B., Warnell, G., Stone, P.: Motion planning and control for mobile robot navigation using machine learning: a survey. Auton. Robot. 46(5), 569–597 (2022)

    Article  Google Scholar 

  46. Zhang, J., Cheung, B., Finn, C., Levine, S., Jayaraman, D.: Cautious adaptation for reinforcement learning in safety-critical settings. In: International Conference on Machine Learning, pp. 11055–11065. PMLR (2020)

    Google Scholar 

  47. Zhang, J., Zhang, Z.M.: Ethics and governance of trustworthy medical artificial intelligence. BMC Med. Informatics Decis. Making 23(1), 7 (2023)

    Article  Google Scholar 

  48. Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: a review. Tsinghua Sci. Technol. 26(5), 674–691 (2021)

    Article  Google Scholar 

  49. Zhu, Y., Wang, Z., Chen, C., Dong, D.: Rule-based reinforcement learning for efficient robot navigation with space reduction. IEEE/ASME Trans. Mechatron. 27(2), 846–857 (2022). https://doi.org/10.1109/TMECH.2021.3072675

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by REXASI-PRO H-EU project, call HORIZON-CL4-2021-HUMAN-01-01, Grant agreement ID: 101070028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Narteni .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narteni, S., Carlevaro, A., Guzzi, J., Mongelli, M. (2024). Ensuring Safe Social Navigation via Explainable Probabilistic and Conformal Safety Regions. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2156. Springer, Cham. https://doi.org/10.1007/978-3-031-63803-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63803-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63802-2

  • Online ISBN: 978-3-031-63803-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics