Nothing Special   »   [go: up one dir, main page]

Skip to main content

Differential Privacy for Anomaly Detection: Analyzing the Trade-Off Between Privacy and Explainability

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Anomaly detection (AD), also referred to as outlier detection, is a statistical process aimed at identifying observations within a dataset that significantly deviate from the expected pattern of the majority of the data. Such a process finds wide application in various fields, such as finance and healthcare. While the primary objective of AD is to yield high detection accuracy, the requirements of explainability and privacy are also paramount. The first ensures the transparency of the AD process, while the second guarantees that no sensitive information is leaked to untrusted parties. In this work, we exploit the trade-off of applying Explainable AI (XAI) through SHapley Additive exPlanations (SHAP) and differential privacy (DP). We perform AD with different models and on various datasets, and we thoroughly evaluate the cost of privacy in terms of decreased accuracy and explainability. Our results show that the enforcement of privacy through DP has a significant impact on detection accuracy and explainability, which depends on both the dataset and the considered AD model.

F. Ezzeddine and M. Saad—Co-first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The summary plots display SHAP values for each feature and data point, indicating their impact on classifying normal or abnormal. On the x-axis, SHAP values show a feature’s influence on predictions, with positive or negative values indicating a tendency towards an abnormal or normal prediction, respectively. The y-axis ranks features by importance, and point colors signify feature values-red for high and blue for low.

  2. 2.

    As similar trends in the SHAP summary plots are observed in the two other datasets, we omit to show them and the relative discussion. To illustrate the visual changes, we show summary plots for only two \(\varepsilon \) values (0.01 and 5).

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016)

    Google Scholar 

  3. Ahmed, M., Mahmood, A.N., Islam, Md.R.: A survey of anomaly detection techniques in financial domain. Future Gener. Comput. Syst. 55, 278–288 (2016)

    Google Scholar 

  4. Alabdulatif, A., Khalil, I., Kumarage, H., Zomaya, A.Y., Yi, X.: Privacy-preserving anomaly detection in the cloud for quality assured decision-making in smart cities. J. Parallel Distrib. Comput. 127, 209–223 (2019)

    Google Scholar 

  5. Alharbi, B., Liang, Z., Aljindan, J.M., Agnia, A.K., Zhang, X.: Explainable and interpretable anomaly detection models for production data. SPE J. 27(01), 349–363 (2022)

    Google Scholar 

  6. Angelini, F., Yan, J., Naqvi, S.M.: Privacy-preserving online human behaviour anomaly detection based on body movements and objects positions. In: ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8444–8448. IEEE (2019)

    Google Scholar 

  7. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD–a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  8. Bozorgpanah, A., Torra, V., Aliahmadipour, L.: Privacy and explainability: the effects of data protection on Shapley values. Technologies 10(6), 125 (2022)

    Article  Google Scholar 

  9. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LoF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  11. Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T.: Autoencoder-based network anomaly detection. In: 2018 Wireless Telecommunications Symposium (WTS), pp. 1–5. IEEE (2018)

    Google Scholar 

  12. Chukkapalli, S.S.L., Ranade, P., Mittal, S., Joshi, A.: A privacy preserving anomaly detection framework for cooperative smart farming ecosystem. In: 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 340–347. IEEE (2021)

    Google Scholar 

  13. de Araújo, F.M.N.: XAIPrivacy-XAI with Differential Privacy. Ph.D. thesis, Universidade do Porto (Portugal) (2023)

    Google Scholar 

  14. Degue, K.H., Gopalakrishnan, K., Li, M.Z., Balakrishnan, H.: Differentially private outlier detection in correlated data. In: 2021 60th IEEE Conference on Decision and Control (CDC), pp. 2735–2742. IEEE (2021)

    Google Scholar 

  15. Du, M., Jia, R., Song, D.: Robust anomaly detection and backdoor attack detection via differential privacy. arXiv preprint arXiv:1911.07116 (2019)

  16. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  17. Ezzeddine, F., Ayoub, O., Andreoletti, D., Tornatore, M., Giordano, S.: Vertical split learning-based identification and explainable deep learning-based localization of failures in multi-domain NFV systems. In: 2023 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 46–52. IEEE (2023)

    Google Scholar 

  18. Giraldo, J., Cardenas, A., Kantarcioglu, M., Katz, J.: Adversarial classification under differential privacy. In: Network and Distributed Systems Security (NDSS) Symposium 2020 (2020)

    Google Scholar 

  19. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  20. Guo, J., Zheng, P., Huang, J.: Efficient privacy-preserving anomaly detection and localization in bitstream video. IEEE Trans. Circuits Syst. Video Technol. 30(9), 3268–3281 (2019)

    Article  Google Scholar 

  21. Harder, F., Bauer, M., Park, M.: Interpretable and differentially private predictions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4083–4090 (2020)

    Google Scholar 

  22. Ul Hassan, M., Rehmani, M.H., Chen, J.: Differential privacy in blockchain technology: a futuristic approach. J. Parallel Distrib. Comput. 145, 50–74 (2020)

    Google Scholar 

  23. Jetchev, D., Vuille, M.: Xorshap: privacy-preserving explainable AI for decision tree models. Cryptology ePrint Archive (2023)

    Google Scholar 

  24. Jia, W., Shukla, R.M., Sengupta, S.: Anomaly detection using supervised learning and multiple statistical methods. In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1291–1297. IEEE (2019)

    Google Scholar 

  25. Jiang, H., Pei, J., Dongxiao, Yu., Jiguo, Yu., Gong, B., Cheng, X.: Applications of differential privacy in social network analysis: a survey. IEEE Trans. Knowl. Data Eng. 35(1), 108–127 (2021)

    Google Scholar 

  26. Keshk, M., Sitnikova, E., Moustafa, N., Jiankun, H., Khalil, I.: An integrated framework for privacy-preserving based anomaly detection for cyber-physical systems. IEEE Trans. Sustain. Comput. 6(1), 66–79 (2019)

    Article  Google Scholar 

  27. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detection using clusters. In: Proceedings of the Twenty-Eighth Australasian Conference on Computer Science, vol. 38, pp. 333–342 (2005)

    Google Scholar 

  28. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23(1), 18 (2020)

    Article  Google Scholar 

  29. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  30. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Lyu, L., Law, Y.W., Erfani, S.M., Leckie, C., Palaniswami, M.: An improved scheme for privacy-preserving collaborative anomaly detection. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6. IEEE (2016)

    Google Scholar 

  32. Ma, S., et al.: Privacy-preserving anomaly detection in cloud manufacturing via federated transformer. IEEE Trans. Ind. Inform. 18(12), 8977–8987 (2022)

    Google Scholar 

  33. Mariotti, E., Alonso-Moral, J.M., Gatt, A.: Measuring model understandability by means of Shapley additive explanations. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2022)

    Google Scholar 

  34. Mariotti, E., Sivaprasad, A., Moral, J.M.A.: Beyond prediction similarity: Shapgap for evaluating faithful surrogate models in XAI. In: Longo, L. (ed.) xAI 2023. CCIS, vol. 1901, pp. 160–173. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44064-9_10

    Chapter  Google Scholar 

  35. Mayer, R., Hittmeir, M., Ekelhart, A.: Privacy-preserving anomaly detection using synthetic data. In: Singhal, A., Vaidya, J. (eds.) DBSec 2020. LNCS, vol. 12122, pp. 195–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49669-2_11

    Chapter  Google Scholar 

  36. Mehnaz, S., Bertino, E.: Privacy-preserving real-time anomaly detection using edge computing. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 469–480. IEEE (2020)

    Google Scholar 

  37. Montenegro, H., Silva, W., Cardoso, J.S.: Privacy-preserving generative adversarial network for case-based explainability in medical image analysis. IEEE Access 9, 148037–148047 (2021)

    Google Scholar 

  38. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991–2005 (2018)

    Google Scholar 

  39. Muruti, G., Rahim, F.A., bin Ibrahim, Z.-A., A survey on anomalies detection techniques and measurement methods. In: 2018 IEEE Conference on Application, Information and Network Security (AINS), pp. 81–86. IEEE (2018)

    Google Scholar 

  40. Naidu, R., Priyanshu, A., Kumar, A., Kotti, S., Wang, H., Mireshghallah, F.: When differential privacy meets interpretability: a case study. arXiv preprint arXiv:2106.13203 (2021)

  41. Nori, H., Caruana, R., Bu, Z., Shen, J.H., Kulkarni, J.: Accuracy, interpretability, and differential privacy via explainable boosting. In: International Conference on Machine Learning, pp. 8227–8237. PMLR (2021)

    Google Scholar 

  42. Okada, R., Fukuchi, K., Sakuma, J.: Differentially private analysis of outliers. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 458–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_28

    Chapter  Google Scholar 

  43. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and data mining, pp. 353–362 (2019)

    Google Scholar 

  44. Panjei, E., Gruenwald, L., Leal, E., Nguyen, C., Silvia, S.: A survey on outlier explanations. VLDB J. 31(5), 977–1008 (2022)

    Article  Google Scholar 

  45. Ravi, A., Yu, X., Santelices, I., Karray, F., Fidan, B.: General frameworks for anomaly detection explainability: comparative study. In: 2021 IEEE International Conference on Autonomous Systems (ICAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  46. Roshan, K., Zafar, A.: Utilizing xAI technique to improve autoencoder based model for computer network anomaly detection with Shapley additive explanation (Shap). arXiv preprint arXiv:2112.08442 (2021)

  47. Roshan, K., Zafar, A.: Using kernel Shap xAI method to optimize the network anomaly detection model. In: 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 74–80. IEEE (2022)

    Google Scholar 

  48. Sridharan, R., Maiti, R.R., Tippenhauer, N.O.: Wadac: privacy-preserving anomaly detection and attack classification on wireless traffic. In: Proceedings of the 11th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 51–62 (2018)

    Google Scholar 

  49. Tritscher, J., Krause, A., Hotho, A.: Feature relevance xAI in anomaly detection: Reviewing approaches and challenges. Front. Artif. Intell. 6, 1099521 (2023)

    Article  Google Scholar 

  50. Veugen, T., Kamphorst, B., Marcus, M.: Privacy-preserving contrastive explanations with local foil trees. Cryptography 6(4), 54 (2022)

    Article  Google Scholar 

  51. Woods, K.S., Doss, C.C., Bowyer, K.W., Solka, J.L., Priebe, C.E., Kegelmeyer Jr., W.P.: Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography. Int. J. Pattern Recogn. Artif. Intell. 7(06), 1417–1436 (1993)

    Google Scholar 

  52. Yang, M., Song, L., Xu, J., Li, C., Tan, G.: The tradeoff between privacy and accuracy in anomaly detection using federated XGBoost. arXiv preprint arXiv:1907.07157 (2019)

  53. Yuan, S., Wu, X.: Trustworthy anomaly detection: a survey. arXiv preprint arXiv:2202.07787 (2022)

  54. Zhang, P., Huang, X., Sun, X., Wang, H., Ma, Y.: Privacy-preserving anomaly detection across multi-domain networks. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 1066–1070. IEEE (2012)

    Google Scholar 

  55. Zhang, Z., et al.: \(\{\)PrivSyn\(\}\): differentially private data synthesis. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 929–946 (2021)

    Google Scholar 

  56. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection, In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgements

F. Ezzeddine was supported by the Swiss Government Excellence Scholarship. Dr. M. Gjoreski’s work was funded by SNSF through the project XAI-PAC (grant number PZ00P2_216405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Ezzeddine .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ezzeddine, F. et al. (2024). Differential Privacy for Anomaly Detection: Analyzing the Trade-Off Between Privacy and Explainability. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2155. Springer, Cham. https://doi.org/10.1007/978-3-031-63800-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63800-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63799-5

  • Online ISBN: 978-3-031-63800-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics