Abstract
Decision tree classifiers (DTs) provide an effective machine-learning model, well-known for its intuitive interpretability. However, they still miss opportunities well-established in software engineering that could further improve their explainability: separation of concerns, encapsulation, and reuse of behaviors. To enable these concepts, we introduce templates in decision diagrams (DDs) as an extension of multi-valued DDs. Templates allow to encapsulate and reuse common decision-making patterns. By a case study from the autonomous underwater robotics domain we illustrate the benefits of template DDs for modeling and explaining meta controllers, i.e., hierarchical control structures with underspecified entities. Further, we implement a template-generating refactoring method for DTs. Our evaluation on standard controller benchmarks shows that template DDs can improve explainability of controller DTs by reducing their sizes by more than one order of magnitude.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ethics guidelines for trustworthy AI - European commission, directorate-general for communications networks, content and technology (2019). https://data.europa.eu/doi/10.2759/177365
Four principles of explainable artificial intelligence - (U.S.) national institute of standards and technology (NIST) (2020). https://doi.org/10.6028/NIST.IR.8312-draft
Proposal for a regulation laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts, com(2021) 206 final - European commission (2021). https://ec.europa.eu/transparency/regdoc/rep/1/2021/EN/COM-2021-206-F1-EN-MAIN-PART-1.PDF
Anand, A., Nayak, S.P., Schmuck, A.K.: Synthesizing permissive winning strategy templates for parity games. In: Enea, C., Lal, A. (eds.) CAV 2023. LNCS, vol. 13694, pp. 436–458. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37706-8_22
Ashok, P., Jackermeier, M., Křetínský, J., Weinhuber, C., Weininger, M., Yadav, M.: dtControl 2.0: explainable strategy representation via decision tree learning steered by experts. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12652, pp. 326–345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_17
Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J.M., Marquis, P.: On the explanatory power of boolean decision trees. Data Knowl. Eng. 142, 102088 (2022). https://doi.org/10.1016/j.datak.2022.102088
Bagnell, J.A., et al.: An integrated system for autonomous robotics manipulation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, 7–12 October 2012, pp. 2955–2962. IEEE (2012https://doi.org/10.1109/IROS.2012.6385888
Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek, R.: From verification to causality-based explications. In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP) (2021)
Baier, C., Dubslaff, C., Wienhöft, P., Kiebel, S.J.: Strategy synthesis in Markov decision processes under limited sampling access. In: Rozier, K.Y., Chaudhuri, S. (eds.) NFM 2023. LNCS, vol. 13903, pp. 86–103. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33170-1_6
Blumreiter, M., et al.: Towards self-explainable cyber-physical systems. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 543–548 (2019)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)
Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/136035.136043
Camilli, M., Mirandola, R., Scandurra, P.: XSA: explainable self-adaptation. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, pp. 1–5 (2022)
Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear arithmetic. In: 2009 Formal Methods in Computer-Aided Design, pp. 53–60 (2009). https://doi.org/10.1109/FMCAD.2009.5351143
Chen, B., Peng, X., Yu, Y., Nuseibeh, B., Zhao, W.: Self-adaptation through incremental generative model transformations at runtime. In: Jalote, P., Briand, L.C., van der Hoek, A. (eds.) 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India, 31 May–07 June 2014, pp. 676–687. ACM (2014). https://doi.org/10.1145/2568225.2568310
Cheng, S., Garlan, D.: Stitch: a language for architecture-based self-adaptation. J. Syst. Softw. 85(12), 2860–2875 (2012). https://doi.org/10.1016/J.JSS.2012.02.060
Chrszon, P., Baier, C., Dubslaff, C., Klüppelholz, S.: Interaction detection in configurable systems - a formal approach featuring roles. J. Syst. Softw. 196, 111556 (2023)
Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Profeat: feature-oriented engineering for family-based probabilistic model checking. Formal Aspects Comput. 30(1), 45–75 (2018)
Cioara, T., Anghel, I., Salomie, I., Dinsoreanu, M., Copil, G., Moldovan, D.: A self-adapting algorithm for context aware systems. In: 9th RoEduNet IEEE International Conference, pp. 374–379 (2010)
Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction. CoRR arxiv:1709.00084 (2017)
Dijkstra, E.W.: On the role of scientific thought. In: Selected Writings on Computing: A Personal Perspective, pp. 60–66. Springer, Berlin (1982). https://doi.org/10.1007/978-1-4612-5695-3_12
Drechsler, R., Lüth, C., Fey, G., Güneysu, T.: Towards self-explaining digital systems: a design methodology for the next generation. In: 3rd International Verification and Security Workshop (IVSW), pp. 1–6. IEEE (2018). https://doi.org/10.1109/IVSW.2018.8494900
Dubslaff, C., Weis, K., Baier, C., Apel, S.: Feature causality. J. Syst. Softw. 209, 111915 (2024). https://doi.org/10.1016/j.jss.2023.111915
Fey, G., Fränzle, M., Drechsler, R.: Self-explanation in systems of systems. In: 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW), pp. 85–91. IEEE (2022)
Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston (1999)
Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams: an efficient data structure for matrix representation. Formal Methods Syst. Des. 10(2/3), 149–169 (1997)
Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and implication counterexamples. In: POPL, pp. 499–512. ACM (2016)
Good, I.J.: Explicativity: a mathematical theory of explanation with statistical applications. Proc. R. Soc. Lond. A354, 303–330 (1977)
Harder, H., Jantsch, S., Baier, C., Dubslaff, C.: A unifying formal approach to importance values in Boolean functions. In: Elkind, E. (ed.) Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 2728–2737. International Joint Conferences on Artificial Intelligence Organization (2023). https://doi.org/10.24963/ijcai.2023/304
Hezavehi, S.M., Weyns, D., Avgeriou, P., Calinescu, R., Mirandola, R., Perez-Palacin, D.: Uncertainty in self-adaptive systems: a research community perspective. ACM Trans. Auton. Adapt. Syst. 15(4) (2021). https://doi.org/10.1145/3487921
Horváth, I., Tavčar, J.: Designing cyber-physical systems for runtime self-adaptation: knowing more about what we miss... J. Integr. Des. Process Sci. 25(2), 1–26 (2021).https://doi.org/10.3233/JID210030
Husung, N., Dubslaff, C., Hermanns, H., Köhl, M.A.: OxiDD: a safe, concurrent, modular, and performant decision diagram framework in rust. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 202. LNCS, vol. 14572, pp. 255–275. Springer, Cham (2024)
Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of behavior trees in robotics and AI. Rob. Auton. Syst. 154, 104096 (2022). https://doi.org/10.1016/J.ROBOT.2022.104096
Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating adaptation policies for multi-tier applications in consolidated server environments. In: 2008 International Conference on Autonomic Computing, pp. 23–32 (2008). https://doi.org/10.1109/ICAC.2008.21
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055
Klös, V., Göthel, T., Glesner, S.: Comprehensible and dependable self-learning self-adaptive systems. J. Syst. Arch. 85, 28–42 (2018)
Kohita, R., Wachi, A., Kimura, D., Chaudhury, S., Tatsubori, M., Munawar, A.: Language-based general action template for reinforcement learning agents. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2125–2139. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.findings-acl.187
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Li, N., Adepu, S., Kang, E., Garlan, D.: Explanations for human-on-the-loop: a probabilistic model checking approach. In: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 181–187 (2020)
Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 2119–2128 (2009). https://doi.org/10.1145/1518701.1519023
Little, I., Thiébaux, S.: Probabilistic planning vs replanning. In: Proceedings of ICAPS Workshop on IPC: Past, Present and Future (2007)
Mayr, M., Chatzilygeroudis, K., Ahmad, F., Nardi, L., Krueger, V.: Learning of parameters in behavior trees for movement skills. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7572–7579 (2021). https://doi.org/10.1109/IROS51168.2021.9636292
McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
McMillan, K.L.: Symbolic Model Checking. Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3190-6_3
Minato, S.I.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publishers, Boston (1996)
Mitchell, T.M.: Machine learning. McGraw Hill series in computer science. McGraw-Hill (1997)
Ouedraogo, L., Kumar, R., Malik, R., Akesson, K.: Nonblocking and safe control of discrete-event systems modeled as extended finite automata. IEEE Trans. Autom. Sci. Eng. 8(3), 560–569 (2011). https://doi.org/10.1109/TASE.2011.2124457
Padalkar, A., et al.: Guiding reinforcement learning with shared control templates. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11531–11537 (2023). https://doi.org/10.1109/ICRA48891.2023.10161058
Päßler, J., ter Beek, M.H., Damiani, F., Tapia Tarifa, S.L., Johnsen, E.B.: Formal modelling and analysis of a self-adaptive robotic system. In: Herber, P., Wijs, A. (eds.) Proceedings of the 18th International Conference on integrated Formal Methods (iFM 2023), LNCS, vol. 14300, pp. 343–363. Springer (2023). https://doi.org/10.1007/978-3-031-47705-8_18
Plambeck, S., Fey, G., Schyga, J., Hinckeldeyn, J., Kreutzfeldt, J.: Explaining cyber-physical systems using decision trees. In: 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS), pp. 3–8 (2022). https://doi.org/10.1109/CAADCPS56132.2022.00006
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Rezende Silva, G., et al.: SUAVE: an exemplar for self-adaptive underwater vehicles. In: Proceedings of the 18th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2023), pp. 181–187. IEEE (2023). https://doi.org/10.1109/SEAMS59076.2023.00031
Rodrigues, A., Caldas, R.D., Rodrigues, G.N., Vogel, T., Pelliccione, P.: A learning approach to enhance assurances for real-time self-adaptive systems. In: Andersson, J., Weyns, D. (eds.) Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2018, Gothenburg, Sweden, 28–29 May 2018, pp. 206–216. ACM (2018). https://doi.org/10.1145/3194133.3194147
Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009). https://doi.org/10.1145/1516533.1516538
Schwammberger, M., Klös, V.: From specification models to explanation models: an extraction and refinement process for timed automata. Electron. Proc. Theor. Comput. Sci. 371, 20–37 (2022). https://doi.org/10.4204/eptcs.371.2
Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing behavior trees. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 144–155. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25090-3_13
Sistla, M.A., Chaudhuri, S., Reps, T.: Cflobdds: context-free-language ordered binary decision diagrams. ACM Trans. Program. Lang. Syst. (2024). https://doi.org/10.1145/3651157
Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete function manipulation. In: 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers, pp. 92–95 (1990). https://doi.org/10.1109/ICCAD.1990.129849
Sun, Y., Yin, X., Huang, F.: Temple: learning template of transitions for sample efficient multi-task RL. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9765–9773 (2021)
Union, E.: On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection regulation). In: Regulation (EU) 2016/679 of the European Parliament And of the Council. vol. Article 13(2)(f) (2016)
Watson, A., Wallace, D., McCabe, T., Associates, M.., of Standards, N.I., (U.S.), T.: Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric. No. v. 13 in NIST special publication, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology (1996)
Weyns, D.: An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective. John Wiley & Sons, Hoboken (2020)
Zapreev, I.S., Verdier, C., Mazo, M.: Optimal symbolic controllers determinization for BDD storage. IFAC-PapersOnLine 51(16), 1–6 (2018). https://doi.org/10.1016/j.ifacol.2018.08.001
Zuse, H.: Software Complexity: Measures and Methods. Programming complex systems, W. de Gruyter (1991)
Acknowledgments
This work was partially supported by the DFG under the projects EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy) and TRR 248 (see https://perspicuous-computing.science, project ID 389792660), by the NWO through Veni grant VI.Veni.222.431, and by the European Union’s Horizon 2020 Framework Programme through the MSCA network REMARO (Grant Agreement No 956200). Authors in alphabetic order.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dubslaff, C., Klös, V., Päßler, J. (2024). Template Decision Diagrams for Meta Control and Explainability. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-63797-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63796-4
Online ISBN: 978-3-031-63797-1
eBook Packages: Computer ScienceComputer Science (R0)