Nothing Special   »   [go: up one dir, main page]

Skip to main content

Understanding Survival Models Through Counterfactual Explanations

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The development of black-box survival models has created a need for methods that explain their outputs, just as in the case of traditional machine learning methods. Survival models usually predict functions rather than point estimates. This special nature of their output makes it more difficult to explain their operation. We propose a method to generate plausible counterfactual explanations for survival models. The method supports two options that handle the special nature of survival models’ output. One option relies on the Survival Scores, which are based on the area under the survival function, which is more suitable for proportional hazard models. The other one relies on Survival Patterns in the predictions of the survival model, which represent groups that are significantly different from the survival perspective. This guarantees an intuitive well-defined change from one risk group (Survival Pattern) to another and can handle more realistic cases where the proportional hazard assumption does not hold. The method uses a Particle Swarm Optimization algorithm to optimize a loss function to achieve four objectives: the desired change in the target, proximity to the explained example, likelihood, and the actionability of the counterfactual example. Two predictive maintenance datasets and one medical dataset are used to illustrate the results in different settings. The results show that our method produces plausible counterfactuals, which increase the understanding of black-box survival models.

A. Alabdallah and J. Jakubowski—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/abdoush/SurvCounterfactual.

References

  1. Alabdallah, A., Pashami, S., Rögnvaldsson, T., Ohlsson, M. SurvSHAP: a proxy-based algorithm for explaining survival models with SHAP. In: 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2022). https://doi.org/10.1109/DSAA54385.2022.10032392

  2. Alabdallah, A., Ohlsson, M., Pashami, S., Rögnvaldsson, T.: The concordance index decomposition: a measure for a deeper understanding of survival prediction models. Artif. Intell. Med. 148, 102781 (2024). https://doi.org/10.1016/j.artmed.2024.102781

    Article  Google Scholar 

  3. Alabdallah, A., Rognvaldsson, T., Fan, Y., Pashami, S., Ohlsson, M.: Discovering premature replacements in predictive maintenance time-to-event data. In: PHM Society Asia-Pacific Conference, vol. 4, no. 1 (2023). https://doi.org/10.36001/phmap.2023.v4i1.3609

  4. Altarabichi, M.G., Nowaczyk, S., Pashami, S., Sheikholharam Mashhadi, P.: Fast genetic algorithm for feature selection - a qualitative approximation approach. Exp. Syst. Appl. 211 (2023). https://doi.org/10.1016/j.eswa.2022.118528

  5. Chen, C., et al.: Predictive maintenance using cox proportional hazard deep learning. Adv. Eng. Inform. 44, 101054 (2020)

    Google Scholar 

  6. Cox, D.: Regression models and life-tables. J. Roy. Statist. Soc. Ser. B (Methodol). 34, 187–220 (1972)

    Google Scholar 

  7. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Parallel Problem Solving From Nature - PPSN XVI, pp. 448–469 (2020)

    Google Scholar 

  8. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  9. Dispenzieri, A., et al.: Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin. Proc. 87, 517–23 (2012)

    Google Scholar 

  10. Eberhart, R. C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), La Jolla, vol. 1, pp. 84–88 (2000). https://doi.org/10.1109/CEC.2000.870279

  11. Fotso, S., et al.: PySurvival: open source package for survival analysis modeling. https://www.pysurvival.io/

  12. Ishwaran, H., Kogalur, U., Blackstone, E., Lauer, M.: Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008)

    Google Scholar 

  13. Kaplan, E., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  14. Katzman, J., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 24 (2018)

    Article  Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  16. Kovalev, M., Utkin, L., Kasimov, E.: SurvLIME: a method for explaining machine learning survival models. Knowl.-Based Syst. 203, 106164 (2020)

    Article  Google Scholar 

  17. Kovalev, M., Utkin, L., Coolen, F., Konstantinov, A.: Counterfactual explanation of machine learning survival models. Informatica 32, 817–847 (2021)

    Article  MathSciNet  Google Scholar 

  18. Krzyziski, M., Spytek, M., Baniecki, H., Biecek, P.: SurvSHAP(t): time-dependent explanations of machine learning survival models. Knowl.-Based Syst. 262, 110234 (2023)

    Article  Google Scholar 

  19. Lang, J., Giese, M., Ilg, W., Otte, S.: Generating Sparse Counterfactual Explanations for Multivariate Time Series. arXiv (2022)

    Google Scholar 

  20. Lee, C., Zame, W., Yoon, J., Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. Proc. AAAI Conf. Artif. Intell. 32 (2018)

    Google Scholar 

  21. Lundberg, S., Lee, S.: A unified approach to interpreting model predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017)

    Google Scholar 

  22. Mothilal, R., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  23. Pashami, S., et al.: Explainable Predictive Maintenance. arXiv:2306.05120 [cs.AI] (2023)

  24. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. Proc. Web Conf. 2020, 3126–3132 (2020)

    Google Scholar 

  25. Peto, R., Peto, J.: Asymptotically efficient rank invariant test procedures. J. Roy. Statist. Soc. Ser. A (Gen.) 135, 185–207 (1972)

    Article  Google Scholar 

  26. Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Machine Learning and Knowledge Discovery in Databases, pp. 243–259 (2015)

    Google Scholar 

  27. Rahat, M., Kharazian, Z., Mashhadi, P.S., Rögnvaldsson, T., Choudhury, S. Bridging the gap: a comparative analysis of regressive remaining useful life prediction and survival analysis methods for pedictive maintenance. In: PHMAP Conference, vol. 4, no. 1 (2023). https://doi.org/10.36001/phmap.2023.v4i1.3646

  28. Ribeiro, M., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  29. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: 2008 International Conference on Prognostics and Health Management, pp. 1–9 (2008)

    Google Scholar 

  30. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by prototypes. In: ECML PKDD, vol. 2021, pp. 650–665 (2021)

    Google Scholar 

  31. Wachter, S., Mittelstadt, B., Russell, C.: Automated Decisions and the GDPR. Harvard Journal of Law and Technology, Counterfactual Explanations without Opening the Black Box (2017)

    Google Scholar 

  32. Yang, Z., Kanniainen, J., Krogerus, T., Emmert-Streib, F.: Prognostic modeling of predictive maintenance with survival analysis for mobile work equipment. Sci. Rep. 12 (2022)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the CHIST-ERA XPM project, CHISTERA-19-XAI-012, and the CAISR+ project funded by the Swedish Knowledge Foundation. Project XPM is supported by the National Science Centre, Poland (2020/02/Y/ST6/00070), under CHIST-ERA IV program, which has received funding from the EU Horizon 2020 Research and Innovation Programme, under Grant Agreement no 857925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Alabdallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alabdallah, A. et al. (2024). Understanding Survival Models Through Counterfactual Explanations. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics