Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Sex Recognition Based on Dimensionality and Uncertainty of Gait Motion Capture Data

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The paper proposes a method of human sex recognition using individual gait features extracted by measures describing the dimensionality and uncertainty of non-linear dynamical systems. The correlation dimension and sample entropy are computed for time series representing angles of skeletal body joints as well as whole-body orientation and translation. Two aggregation strategies for pose parameters are used – averaging of Euler angles triplets and taking an angle of 3D rotation. In the baseline variant, the distinction between females and males is performed by thresholding the obtained measure values. Moreover, the supervised classification is carried out for the complex gait descriptors characterizing the movements of all bone segments. In the validation experiments, highly precise motion capture measurements containing data of 25 female and 30 male individuals are used. The obtained, at least promising, performance assessed by correct classification rate, the area under the receiver operating characteristic curve, and average precision, is higher than 89%, 96%, and 96%, respectively, and exceeds our expectations. Moreover, the classification accuracy based on a ranking of skeletal joints, as well as whole-body orientation and translation evaluating sex-discriminative traits incorporated in the movements of bone segments, is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Article  Google Scholar 

  2. Ahmadi, B., Amirfattahi, R., et al.: Comparison of correlation dimension and fractal dimension in estimating BIS index. Wirel. Sens. Netw. 2(01), 67–73 (2010)

    Article  Google Scholar 

  3. Arai, K., Asmara, R.: Human gait gender classification using 3D discrete wavelet transform feature extraction. Int. J. Adv. Res. Artif. Intell. 3(2) (2014)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Chatain, C., Ramdani, S., Vallier, J.M., Gruet, M.: Recurrence quantification analysis of force signals to assess neuromuscular fatigue in men and women. Biomed. Signal Process. Control 68, 102593 (2021)

    Article  Google Scholar 

  6. Dhomne, A., Kumar, R., Bhan, V.: Gender recognition through face using deep learning. Procedia Comput. Sci. 132, 2–10 (2018)

    Article  Google Scholar 

  7. Di Nardo, F., Mengarelli, A., Maranesi, E., Burattini, L., Fioretti, S.: Gender differences in the myoelectric activity of lower limb muscles in young healthy subjects during walking. Biomed. Signal Process. Control 19, 14–22 (2015)

    Article  Google Scholar 

  8. Gattal, A., Djeddi, C., Bensefia, A., Ennaji, A.: Handwriting based gender classification using COLD and hinge features. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds.) ICISP 2020. LNCS, vol. 12119, pp. 233–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51935-3_25

    Chapter  Google Scholar 

  9. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)

    Article  MathSciNet  Google Scholar 

  10. Harezlak, K., Kasprowski, P.: Application of time-scale decomposition of entropy for eye movement analysis. Entropy 22(2), 168 (2020)

    Article  Google Scholar 

  11. Horst, F., et al.: Explaining automated gender classification of human gait. Gait Posture 81, 159–160 (2020)

    Article  Google Scholar 

  12. Hughes-Oliver, C., Srinivasan, D., Schmitt, D., Queen, R.: Gender and limb differences in temporal gait parameters and gait variability in ankle osteoarthritis. Gait Posture 65, 228–233 (2018)

    Article  Google Scholar 

  13. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  14. Kastaniotis, D., Theodorakopoulos, I., Economou, G., Fotopoulos, S.: Gait-based gender recognition using pose information for real time applications. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE (2013)

    Google Scholar 

  15. Kobayashi, Y., Hobara, H., Heldoorn, T.A., Kouchi, M., Mochimaru, M.: Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait Posture 46, 11–17 (2016)

    Article  Google Scholar 

  16. Kumari, M., Talukdar, N., Ali, I.: A new gender detection algorithm considering the non-stationarity of speech signal. In: 2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS), pp. 141–146. IEEE (2016)

    Google Scholar 

  17. Mostafa, A., Barghash, T.O., Assaf, A.A.S., Gomaa, W.: Multi-sensor gait analysis for gender recognition. In: ICINCO, pp. 629–636 (2020)

    Google Scholar 

  18. Okin, P.M., Kligfield, P.: Gender-specific criteria and performance of the exercise electrocardiogram. Circulation 92(5), 1209–1216 (1995)

    Article  Google Scholar 

  19. Phinyomark, A., Osis, S.T., Hettinga, B.A., Kobsar, D., Ferber, R.: Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet. Disord. 17(1), 1–12 (2016)

    Article  Google Scholar 

  20. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

  21. Sargezeh, B.A., Tavakoli, N., Daliri, M.R.: Gender-based eye movement differences in passive indoor picture viewing: an eye-tracking study. Physiol. Behav. 206, 43–50 (2019)

    Article  Google Scholar 

  22. Świtoński, A., Josiński, H., Polański, A., Wojciechowski, K.: Correlation dimension and entropy in the assessment of sex differences based on human gait data. Front. Hum. Neurosci. 17, 1233859 (2023)

    Article  Google Scholar 

  23. Świtoński, A., Josiński, H., Wojciechowski, K.: Dynamic time warping in classification and selection of motion capture data. Multidimension. Syst. Signal Process. 30(3), 1437–1468 (2019)

    Article  Google Scholar 

  24. Szczesna, A.: Quaternion entropy for analysis of gait data. Entropy 21(1), 79 (2019)

    Article  Google Scholar 

  25. Szczesna, A., Augustyn, D., Harezlak, K., Josinski, H., Switonski, A., Kasprowski, P.: Datasets for learning of unknown characteristics of dynamical systems. Sci. Data 10(1), 79 (2023)

    Article  Google Scholar 

  26. Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 371–387 (2002)

    Article  Google Scholar 

  27. Tsimperidis, I., Arampatzis, A., Karakos, A.: Keystroke dynamics features for gender recognition. Digit. Investig. 24, 4–10 (2018)

    Article  Google Scholar 

  28. Wang, P., Hu, J.: A hybrid model for EEG-based gender recognition. Cogn. Neurodyn. 13, 541–554 (2019)

    Article  Google Scholar 

  29. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

    Google Scholar 

Download references

Acknowledgements

This publication was supported by the Department of Computer Graphics, Vision and Digital Systems, under the statutory research project (Rau6, 2024), Silesian University of Technology (Gliwice, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Świtoński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Świtoński, A., Josiński, H. (2024). Human Sex Recognition Based on Dimensionality and Uncertainty of Gait Motion Capture Data. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics