Nothing Special   »   [go: up one dir, main page]

Skip to main content

C-XGBoost: A Tree Boosting Model for Causal Effect Estimation

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data. This knowledge is important in many safety-critical domains, where it often needs to be extracted from observational data. In this work, we propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes. The motivation of our approach is to exploit the superiority of tree-based models for handling tabular data together with the notable property of causal inference neural network-based models to learn representations that are useful for estimating the outcome for both the treatment and non-treatment cases. The proposed model also inherits the considerable advantages of XGBoost model such as efficiently handling features with missing values requiring minimum preprocessing effort, as well as it is equipped with regularization techniques to avoid overfitting/bias. Furthermore, we propose a new loss function for efficiently training the proposed causal inference model. The experimental analysis, which is based on the performance profiles of Dolan and Moré as well as on post-hoc and non-parametric statistical tests, provide strong evidence about the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaa, A., Schaar, M.: Limits of estimating heterogeneous treatment effects: guidelines for practical algorithm design. In: International Conference on Machine Learning, pp. 129–138. PMLR (2018)

    Google Scholar 

  2. Atashgahi, Z., et al.: Supervised feature selection with neuron evolution in sparse neural networks. Trans. Mach. Learn. Res. 2023 (2023)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  6. Finner, H.: On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 88(423), 920–923 (1993)

    Article  MathSciNet  Google Scholar 

  7. Grinsztajn, L., Oyallon, E., Varoquaux, G.: Why do tree-based models still outperform deep learning on typical tabular data? In: Advances in Neural Information Processing Systems, vol. 35, pp. 507–520 (2022)

    Google Scholar 

  8. Hodges, J., Lehmann, E.L.: Rank methods for combination of independent experiments in analysis of variance. In: Rojo, J. (eds) Selected Works of E. L. Lehmann. Selected Works in Probability and Statistics, pp. 403–418. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-1412-4_35

  9. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029. PMLR (2016)

    Google Scholar 

  10. Johansson, F.D., Shalit, U., Kallus, N., Sontag, D.: Generalization bounds and representation learning for estimation of potential outcomes and causal effects. J. Mach. Learn. Res. 23(1), 7489–7538 (2022)

    MathSciNet  Google Scholar 

  11. Kiriakidou, N., Diou, C.: An evaluation framework for comparing causal inference models. In: Proceedings of the 12th Hellenic Conference on Artificial Intelligence, pp. 1–9 (2022)

    Google Scholar 

  12. Kiriakidou, N., Diou, C.: An improved neural network model for treatment effect estimation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds.) AIAI 2022. IFIP AICT, vol. 647, pp. 147–158. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08337-2_13

    Chapter  Google Scholar 

  13. Kiriakidou, N., Diou, C.: Integrating nearest neighbors with neural network models for treatment effect estimation. Int. J. Neural Syst. (2023)

    Google Scholar 

  14. Kiriakidou, N., Livieris, I.E., Pintelas, P.: Mutual information-based neighbor selection method for causal effect estimation. Neural Comput. Appl. 1–15 (2024)

    Google Scholar 

  15. Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl. Acad. Sci. 116(10), 4156–4165 (2019)

    Article  Google Scholar 

  16. Livieris, I.E., Karacapilidis, N., Domalis, G., Tsakalidis, D.: An advanced explainable and interpretable ML-based framework for educational data mining. In: Kubincová, Z., Caruso, F., Kim, T., Ivanova, M., Lancia, L., Pellegrino, M.A. (eds.) MIS4TEL 2023. LNNS, vol. 769, pp. 87–96. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42134-1_9

    Chapter  Google Scholar 

  17. Livieris, I.E., Pintelas, P.: A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization. J. Comput. Appl. Math. 239, 396–405 (2013)

    Article  MathSciNet  Google Scholar 

  18. Livieris, I.E., Stavroyiannis, S., Iliadis, L., Pintelas, P.: Smoothing and stationarity enforcement framework for deep learning time-series forecasting. Neural Comput. Appl. 33(20), 14021–14035 (2021)

    Article  Google Scholar 

  19. Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. MacDorman, M.F., Atkinson, J.O.: Infant mortality statistics from the 1996 period linked birth/infant death data set. Mon. Vital Stat. Rep. 46(12) (1998)

    Google Scholar 

  21. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  22. Pouyanfar, S.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 51(5), 1–36 (2018)

    Article  Google Scholar 

  23. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100(469), 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning, pp. 3076–3085. PMLR (2017)

    Google Scholar 

  25. Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Shimoni, Y., Yanover, C., Karavani, E., Goldschmnidt, Y.: Benchmarking framework for performance-evaluation of causal inference analysis. arXiv preprint arXiv:1802.05046 (2018)

  27. Shinde, P.P., Shah, S.: A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6. IEEE (2018)

    Google Scholar 

  28. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113(523), 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhou, G., Yao, L., Xu, X., Wang, C., Zhu, L.: Cycle-balanced representation learning for counterfactual inference. In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp. 442–450. SIAM (2022)

    Google Scholar 

Download references

Acknowledgements

The work leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 965231, project REBECCA (REsearch on BrEast Cancer induced chronic conditions supported by Causal Analysis of multi-source data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niki Kiriakidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiriakidou, N., Livieris, I.E., Diou, C. (2024). C-XGBoost: A Tree Boosting Model for Causal Effect Estimation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63219-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63218-1

  • Online ISBN: 978-3-031-63219-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics