Nothing Special   »   [go: up one dir, main page]

Skip to main content

\(\text {SPL}^{{index}}\): A Spatial Polygon Learned Index

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14670))

Included in the following conference series:

  • 389 Accesses

Abstract

Effective indexing is crucial for any AI and big data analysis task involving huge datasets. Recently, machine-learned models for indexing have achieved much attention, and we apply such for spatial data, specifically huge collections of polygons. We propose an index structure \(\text {SPL}^{{index}}\) that organizes polygons into a tree of clusters with linear regression models for effective branching in search. It integrates an effective layout of polygon data to disk space that minimize disk access and amount of data to be kept in main memory. The approach is shown outperform the state-of-the-art R-tree for both range and point queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://osmdata.openstreetmap.de/data/land-polygons.html.

  2. 2.

    https://osmdata.openstreetmap.de/data/water-polygons.html.

  3. 3.

    https://spatialhadoop.cs.umn.edu/datasets.html.

  4. 4.

    https://github.com/MasoumehVahedi/SPLindex.

  5. 5.

    https://github.com/Toblerity/rtree.

References

  1. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, pp. 322–331 (1990)

    Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  Google Scholar 

  3. Davitkova, A., Milchevski, E., Michel, S.: The ML-Index: a multidimensional, learned index for point, range, and nearest-neighbor queries. In: EDBT, pp. 407–410 (2020)

    Google Scholar 

  4. Ding, J., et al.: ALEX: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020)

    Google Scholar 

  5. Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. ArXiv abs/2006.13282 (2020)

    Google Scholar 

  6. Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endow. 13(8), 1162–1175 (2020)

    Article  Google Scholar 

  7. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974)

    Article  Google Scholar 

  8. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: FITing-Tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, 30 June–5 July 2019, pp. 1189–1206. ACM (2019)

    Google Scholar 

  9. Georgiadis, T., Mamoulis, N.: Raster intervals: an approximation technique for polygon intersection joins. Proc. ACM Manag. Data 1(1), 1–18 (2023)

    Article  Google Scholar 

  10. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

    Google Scholar 

  11. Higuchi, S., Takemasa, J., Koizumi, Y., Tagami, A., Hasegawa, T.: Feasibility of longest prefix matching using learned index structures. SIGMETRICS Perform. Eval. Rev. 48(4), 45–48 (2021)

    Article  Google Scholar 

  12. Kamel, I., Faloutsos, C.: Hilbert r-tree: an improved rtree using fractals. In: VLDB, vol. 94, pp. 500–509. Citeseer (1994)

    Google Scholar 

  13. Kraska, T., et al.: SageDB: a learned database system. In: Conference on Innovative Data Systems Research (2019)

    Google Scholar 

  14. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018)

    Google Scholar 

  15. Lee, K.C., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In: VLDB, vol. 7, pp. 279–290 (2007)

    Google Scholar 

  16. Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. VLDB Endow. 15(2), 321–334 (2021)

    Article  Google Scholar 

  17. Li, P., Lu, H., Zheng, Q., Yang, L., Pan, G.: LISA: a learned index structure for spatial data. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2119–2133 (2020)

    Google Scholar 

  18. Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2019)

    Google Scholar 

  19. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (1984)

    Google Scholar 

  20. Pandey, V., van Renen, A., Kipf, A., Sabek, I., Ding, J., Kemper, A.: The case for learned spatial indexes. ArXiv abs/2008.10349 (2020)

    Google Scholar 

  21. Park, S.C., Shin, H., Choi, B.K.: A sweep line algorithm for polygonal chain intersection and its applications. In: Kimura, F. (ed.) Geometric Modelling. ITIFIP, vol. 75, pp. 309–321. Springer, Boston, MA (2001). https://doi.org/10.1007/978-0-387-35490-3_21

    Chapter  Google Scholar 

  22. Qi, J., Liu, G., Jensen, C.S., Kulik, L.: Effectively learning spatial indices. Proc. VLDB Endow. 13(12), 2341–2354 (2020)

    Article  Google Scholar 

  23. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: a dynamic index for multi-dimensional objects. Technical report (1987)

    Google Scholar 

  24. Singla, S., Eldawy, A., Diao, T., Mukhopadhyay, A., Scudiero, E.: The raptor join operator for processing big raster+ vector data. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 324–335 (2021)

    Google Scholar 

  25. Teng, D., Baig, F., Sun, Q., Kong, J., Wang, F.: IDEAL: a vector-raster hybrid model for efficient spatial queries over complex polygons. In: 2021 22nd IEEE International Conference on Mobile Data Management (MDM), pp. 99–108. IEEE (2021)

    Google Scholar 

  26. Wang, C., Yu, J.: GLIN: a lightweight learned indexing mechanism for complex geometries. arXiv preprint arXiv:2207.07745 (2022)

  27. Wang, H., Fu, X., Xu, J., Lu, H.: Learned index for spatial queries. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 569–574. IEEE (2019)

    Google Scholar 

  28. Yang, Z., et al.: Qd-tree: learning data layouts for big data analytics. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD 2020, pp. 193–208. ACM, New York (2020)

    Google Scholar 

  29. Yousfi, H., Mesmoudi, A., Hadjali, A., Matallah, H., Lahfa, F.: Efficient R-tree exploration for big spatial data. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds.) AI2SD 2020. AISC, vol. 1418, pp. 865–874. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90639-9_70

    Chapter  Google Scholar 

  30. Zardbani, F., Mamoulis, N., Idreos, S., Karras, P.: Adaptive indexing of objects with spatial extent. Proc. VLDB Endow. 16, 2248–2260 (2023)

    Article  Google Scholar 

  31. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996)

    Article  Google Scholar 

Download references

Acknowledgement

This research is partly funded by Independent Research Fund Denmark (No. 1032-00481B). The authors are grateful to Prof. Hua Lu for initiating this project and for valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Vahedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vahedi, M., Christiansen, H. (2024). \(\text {SPL}^{{index}}\): A Spatial Polygon Learned Index. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62700-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62699-9

  • Online ISBN: 978-3-031-62700-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics