Nothing Special   »   [go: up one dir, main page]

Skip to main content

Correspondence Theory on Vector Spaces

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2024)

Abstract

This paper extends correspondence theory to the framework of \(\mathbb {K}\)-algebras, i.e. vector spaces endowed with a bilinear operation, seen as ‘Kripke frames’. For every \(\mathbb {K}\)-algebra, the lattice of its subspaces can be endowed with the structure of a complete (non necessarily monoidal) residuated lattice. Hence, a sequent of the logic of residuated lattices can be interpreted as a property of its lattice of subspaces. Thus, correspondence theory can be developed between the propositional language of this logic and the first order language of \(\mathbb {K}\)-algebras, analogously to the well known correspondence theory between classical normal modal logic and the first-order language of Kripke frames. In this paper, we develop such a theory for the class of analytic inductive inequalities.

The first author acknowledges the NWO grant KIVI.2019.001.

The third author is supported by the Indonesian Education Scholarship, Ref. Number: 1027/J5.2.3/BPI.LG/VIII/2022.

The authors have received support from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101007627.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An element \(x\ne \bot \) of a lattice L is completely join irreducible whenever for any set \(A \subseteq L\), \(x = \bigvee A\) implies \(x \in A\).

  2. 2.

    A \(+\) (resp. −) sign in a node u of \(+s\) (resp. \(-t\)) indicates that s (resp. t) is monotone w.r.t. the subterm rooted in u, while a − (resp. \(+\)) sign indicates that is antitone.

  3. 3.

    Although we use the symbol \(\backslash \) to denote both a connective in the language and the substitution symbol, in the remainder of the paper no ambiguity ever arises, since the terms in substitutions will not contain any explicit occurrence of \(\backslash \).

  4. 4.

    An order type over the variables of a term specifies which polarity serves to compute the minimal valuation for each variable [6]. Hence, \(\varepsilon \)-critical nodes are the occurrences of the variables in such polarities.

  5. 5.

    The acronym PIA means positive implies atomic. It was first introduced in [1] and used as in this context in [6]. The acronym SRR stands for syntactical right residual.

  6. 6.

    The canonical extension \(\mathbb {L}^\delta \) of a preresiduated lattice \(\mathbb {L}\) is a completion of \(\mathbb {L}\), with a lattice embedding \(e: \mathbb {L} \rightarrow \mathbb {L}^\delta \). The canonical extension of a lattice \(\mathbb {L}\) is a quantale which is join-generated (resp. meet generated) by the set \(K(\mathbb {L}^\delta )\) (resp. \(O(\mathbb {L}^\delta )\)) of elements which are in the meet closure (resp. join closure) in \(\mathbb {L}^\delta \) of \(e[\mathbb {L}]\), which are called closed (resp. open) elements. Furthermore, the operations \(\cdot \), \(/\), and \(\backslash \) are extended to \(\mathbb {L}^\delta \) in such a way that they still satisfy residuation rules; hence,

    $$\begin{aligned} \begin{array} {ccccr} \bigvee \nolimits _{s \in S} s \cdot a = \bigvee \nolimits _{s \in S} (s \cdot a) &{}\quad \quad &{} a \cdot \bigvee \nolimits _{s \in S} s = \bigvee \nolimits _{s \in S} (a \cdot s) &{}\quad \quad &{} \text {for every a}\in \mathbb {L}^\delta , S \subseteq \mathbb {L}^\delta , \\ \bigwedge \nolimits _{s \in S} s /a = \bigwedge \nolimits _{s \in S} (s /a) &{}\quad \quad &{} a /\bigvee \nolimits _{s \in S} s = \bigwedge \nolimits _{s \in S} (a /s) &{}\quad \quad &{} \text {for every a}\in \mathbb {L}^\delta , S \subseteq \mathbb {L}^\delta , \\ \bigvee \nolimits _{s \in S} s \backslash a = \bigwedge \nolimits _{s \in S} (s \backslash a) &{}\quad \quad &{} a \backslash \bigwedge \nolimits _{s \in S} s = \bigwedge \nolimits _{s \in S} (a \backslash s) &{}\quad \quad &{} \text {for every a}\in \mathbb {L}^\delta , S \subseteq \mathbb {L}^\delta . \\ \end{array} \end{aligned}$$

    It can be shown that \(\mathbb {L}^\delta \) is join generated (resp. meet generated) by a subset of \(K(\mathbb {L}^\delta )\) (resp. \(O(\mathbb {L}^\delta )\)), i.e., the set \(J^\infty (\mathbb {L}^\delta )\) (resp. \(M^\infty (\mathbb {L}^\delta )\)) of completely join irreducible (resp. completely meet irreducible) elements of \(\mathbb {L}^\delta \) (see [7, Corollary 2.10]).

  7. 7.

    For all \(A, B \subseteq \mathbb {L^\delta }\), \(\bigvee A \le \bigwedge B\) iff \((\forall a \in A)(\forall b \in B) a \le b\).

  8. 8.

    The Ackermann Lemma in this setting implies that for any residuated lattice \(\mathbb {L}\), any variable p, and any formulas \(\alpha ,\beta _1,\ldots , \beta _n\), \(\gamma _1,\ldots ,\gamma _n\), \(\xi \), and \(\zeta \) such that p does not occur in \(\alpha \), is positive in each \(\beta _i\) and \(\zeta \), and negative in each \(\gamma _i\) and \(\xi \), the following quasi-inequalities are equivalent in \(\mathbb {L}\)

    $$\begin{aligned} \alpha \le p, \beta _1\le \gamma _1,\ldots ,\beta _n\le \gamma _n\Rightarrow \xi \le \zeta \quad \text { iff }\quad (\beta _1\le \gamma _1,\ldots ,\beta _n\le \gamma _n\Rightarrow \xi \le \zeta )[\alpha /p]. \end{aligned}$$

    The conditions on the polarity of each variable in the other inequalities are trivially satisfied here. The condition that states that the eliminated variable does not occur in \(\alpha \) (in this case it is equivalent to saying that \(p_i\) does not occur in \(\bigvee M_i[\bigvee M_1/p_1]\cdots [\bigvee M_{i-1} / p_{i-1}]\)) is implied by item 2 of Definition 2 (see [6]).

References

  1. van Benthem, J.: Minimal predicates, fixed-points, and definability. J. Symbol. Logic 70(3), 696–712 (2005). https://doi.org/10.2178/jsl/1122038910

  2. Chen, J., Greco, G., Palmigiano, A., Tzimoulis, A.: Syntactic completeness of proper display calculi. ACM Trans. Comput. Logic 23(4), 1–46 (2022). https://doi.org/10.1145/3529255

  3. Coecke, B., Grefenstette, E., Sadrzadeh, M.: Lambek vs. Lambek: functorial vector space semantics and string diagrams for Lambek calculus. Annals Pure Appl. Logic 164(11), 1079–1100 (2013). https://doi.org/10.1016/j.apal.2013.05.009, special issue on Seventh Workshop on Games for Logic and Programming Languages (GaLoP VII)

  4. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional distributional model of meaning. arXiv preprint arXiv:1003.4394 (2010)

  5. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics, Outstanding Contributions to Logic, vol. 5, pp. 933–975. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_36

  6. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. Ann. Pure Appl. Logic 170(9), 923–974 (2019)

    Article  MathSciNet  Google Scholar 

  7. Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symbolic Logic 70(3), 713–740 (2005). http://www.jstor.org/stable/27588391

  8. Greco, G., Liang, F., Moortgat, M., Palmigiano, A., Tzimoulis, A.: Vector spaces as Kripke frames. IfCoLoG J. Logic. Appl. 7(5), 853–873 (2020)

    MathSciNet  Google Scholar 

  9. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus for semi De Morgan logic. In: Kennedy, J., de Queiroz, R.J. (eds.) Logic, Language, Information, and Computation, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_14

  10. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Log. Comput. 28(7), 1367–1442 (2018)

    MathSciNet  Google Scholar 

  11. Greco, G., Palmigiano, A.: Linear logic properly displayed. ACM Trans. Comput. Logic 24(2), 1–56 (2023). https://doi.org/10.1145/3570919

  12. Kurtonina, N., Moortgat, M.: Structural control. In: Specifying Syntactic Structures, pp. 75–113 (1997)

    Google Scholar 

  13. Rosenthal, K.: Quantales and Their Applications. Pitman Research Notes in Mathematics Series. Longman Scientific & Technical (1990)

    Google Scholar 

  14. Routley, R., Meyer, R.K.: The semantics of entailment: III. J. Philos. Logic 1(2), 192–208 (1972). http://www.jstor.org/stable/30226036

  15. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logic. In: Studies in Logic and the Foundations of Mathematics, vol. 82, pp. 110–143. Elsevier (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Panettiere .

Editor information

Editors and Affiliations

A Examples

A Examples

The present section collects some examples that showcase the results in the paper.

Example 2

The inequality \((p\vee q)\otimes (r/(p\otimes q))\le (q\otimes (p\vee r))/((p\backslash q)\vee r)\) is analytic \((\varOmega ,\varepsilon )\)-inductive for \(\varepsilon (p,q,r)=(1,1,1)\) and \(p<q<r\). By distributing \(\otimes \) over \(\vee \) and following the fact that / is join reversing on its right coordinate, we get the inequality:

$$\begin{aligned} (p\otimes (r/(p\otimes q)))\vee (q\otimes (r/(p\otimes q))) \le (((q\otimes p)\vee (q\otimes r))/(p\backslash q))\wedge (((q\otimes p)\vee (q\otimes r))/r), \end{aligned}$$

which is equivalent to the system

$$\begin{aligned} \begin{array}{lll} p\otimes (r/(p\otimes q)) &{}\le &{}((q\otimes p)\vee (q\otimes r))/(p\backslash q) \\ q\otimes (r/(p\otimes q)) &{}\le &{}((q\otimes p)\vee (q\otimes r))/(p\backslash q)\\ p\otimes (r/(p\otimes q)) &{}\le &{}((q\otimes p)\vee (q\otimes r))/r \\ q\otimes (r/(p\otimes q)) &{}\le &{}((q\otimes p)\vee (q\otimes r))/r. \end{array} \end{aligned}$$

By residuation, the system can be rewritten as follows (thus reaching the shape in Lemma 5)

$$\begin{aligned} \begin{array}{lll} (p\otimes (r/(p\otimes q)))\otimes (p\backslash q) &{}\le &{}(q\otimes p)\vee (q\otimes r) \\ (q\otimes (r/(p\otimes q)))\otimes (p\backslash q) &{}\le &{}(q\otimes p)\vee (q\otimes r)\\ (p\otimes (r/(p\otimes q)))\otimes r &{}\le &{}(q\otimes p)\vee (q\otimes r) \\ (q\otimes (r/(p\otimes q)))\otimes r &{}\le &{}(q\otimes p)\vee (q\otimes r). \end{array} \end{aligned}$$

Using notation in Lemma 5, the first inequality has shape \(\varphi (\overline{x})[ \overline{\xi }/ \overline{x}] \le \bigvee _i \beta _i(\overline{r_i})\), where \(\varphi (x_1, x_2, x_3) := (x_1 \otimes x_2) \otimes x_3\), \(\xi _1 := \alpha _1(p) := p\), \(\xi _2 := \alpha _2(r, p, q) = r /(p \otimes q)\), \(\xi _3 := \alpha _3(p, q) := p \backslash q\), \(\beta _1(q, p) := q \otimes p\), and \(\beta _2(q, r) := q \otimes r\).

Example 3

The inequality \((((q\otimes r)\backslash p)\vee s)\otimes ((s\backslash q)\otimes (p/s))\le ((p/(s\otimes r))\backslash (p\otimes s))\wedge ((s\otimes (p\otimes q))/((p/s)\wedge r))\) is analytic \((\varOmega ,\varepsilon )\)-inductive with \(\varepsilon (p,q,r,s)=(\partial ,1,\partial ,1)\) and \(s<q<p<r\). By distributing \(\otimes \) over \(\vee \) we get

$$\begin{aligned} &\quad \,\, (((q\otimes r)\backslash p)\otimes ((s\backslash q)\otimes (p/s)))\vee (s\otimes ((s\backslash q)\otimes (p/s))) \\ & \le ((p/(s\otimes r))\backslash (p\otimes s))\wedge ((s\otimes (p\otimes q))/((p/s)\wedge r)), \end{aligned}$$

which is equivalent (by also applying residuation) to the system:

$$\begin{aligned} \begin{array}{lll} (p/(s\otimes r))\otimes (((q\otimes r)\backslash p)\otimes ((s\backslash q)\otimes (p/s))) &{}\le &{} p\otimes s \\ (p/(s\otimes r))\otimes (s\otimes ((s\backslash q)\otimes (p/s))) &{}\le &{} p\otimes s\\ (((q\otimes r)\backslash p)\otimes ((s\backslash q)\otimes (p/s)))\otimes ((p/s)\wedge r)&{}\le &{}s\otimes (p\otimes q)\\ (s\otimes ((s\backslash q)\otimes (p/s)))\otimes ((p/s)\wedge r)&{}\le &{}s\otimes (p\otimes q). \end{array} \end{aligned}$$

Example 4

Let us find the correspondent of the first inequality in the system in Example 2. First we show that it is equivalent to a quasi-left primitive.

$$\begin{aligned} \begin{array}{lll} &{}(p\otimes (r/(p\otimes q)))\otimes (p\backslash q) \le (q\otimes p)\vee (q\otimes r)&{} \\ \text {iff} &{}(\bigvee \{\textbf{j}_1 : \textbf{j}_1 \le p\} \otimes \bigvee \{\textbf{j}_2 : \textbf{j}_2 \le r/(p\otimes q)\} ) \otimes \bigvee \{ \textbf{j}_3 : \textbf{j}_3 \le p\backslash q \} \le \bigwedge \{ \textbf{m}: (q\otimes p)\vee (q\otimes r) \le \textbf{m}\}&{} \\ \text {iff} &{} \bigvee \{ (\textbf{j}_1 \otimes \textbf{j}_2) \otimes \textbf{j}_3 : \textbf{j}_1 \le p, \textbf{j}_2 \le r /(p \otimes q), \textbf{j}_3 \le p \backslash q \} \le \bigwedge \{ \textbf{m}: (q\otimes p)\vee (q\otimes r) \le \textbf{m}\} \\ \text {iff} &{} \textbf{j}_1\le p, \textbf{j}_2\le r/(p\otimes q), \textbf{j}_3\le p\backslash q,(q\otimes p)\vee (q\otimes r)\le \textbf{m}\Rightarrow (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le \textbf{m}&{}\\ \text {iff} &{} \textbf{j}_1\le p, \textbf{j}_2 \otimes (p\otimes q)\le r, p\otimes \textbf{j}_3\le q,(q\otimes p)\vee (q\otimes r)\le \textbf{m}\Rightarrow (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le \textbf{m}&{}\\ \text {iff}&{}\textbf{j}_2 \otimes (\textbf{j}_1\otimes q)\le r, \textbf{j}_1\otimes \textbf{j}_3\le q,(q\otimes \textbf{j}_1)\vee (q\otimes r)\le \textbf{m}\Rightarrow (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le \textbf{m}&{} \\ \text {iff}&{}\textbf{j}_2 \otimes (\textbf{j}_1\otimes (\textbf{j}_1\otimes \textbf{j}_3)\le r, ((\textbf{j}_1\otimes \textbf{j}_3)\otimes \textbf{j}_1)\vee ((\textbf{j}_1\otimes \textbf{j}_3)\otimes r)\le \textbf{m}\Rightarrow (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le \textbf{m}&{} \\ \text {iff}&{}((\textbf{j}_1\otimes \textbf{j}_3)\otimes \textbf{j}_1)\vee ((\textbf{j}_1\otimes \textbf{j}_3)\otimes (\textbf{j}_2 \otimes (\textbf{j}_1\otimes (\textbf{j}_1\otimes \textbf{j}_3))))\le \textbf{m}\Rightarrow (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le \textbf{m}&{} \\ \text {iff}&{} (\textbf{j}_1\otimes \textbf{j}_2)\otimes \textbf{j}_3\le ((\textbf{j}_1\otimes \textbf{j}_3)\otimes \textbf{j}_1)\vee ((\textbf{j}_1\otimes \textbf{j}_3)\otimes (\textbf{j}_2 \otimes (\textbf{j}_1\otimes (\textbf{j}_1\otimes \textbf{j}_3))))\\ \text {iff} &{} (p_{\textbf{j}_1}\otimes p_{\textbf{j}_2})\otimes p_{\textbf{j}_3}\le ((p_{\textbf{j}_1}\otimes p_{\textbf{j}_3})\otimes p_{\textbf{j}_1})\vee ((p_{\textbf{j}_1}\otimes p_{\textbf{j}_3})\otimes (p_{\textbf{j}_2} \otimes (p_{\textbf{j}_1}\otimes (p_{\textbf{j}_1}\otimes p_{\textbf{j}_3})))). \end{array} \end{aligned}$$

Hence, by Theorem 3, the inequality correspond to the \(\mathcal {L}_\textrm{FO}\)-formula

$$ \begin{array}{l} \forall v_{\textbf{j}_1}\forall v_{\textbf{j}_2}\forall v_{\textbf{j}_3}\exists \alpha _1\exists \alpha _2 \\ (v_{\textbf{j}_1}\star v_{\textbf{j}_2})\star v_{\textbf{j}_3}=\alpha _1\cdot ((v_{\textbf{j}_1}\star v_{\textbf{j}_3})\star v_{\textbf{j}_1})+ \alpha _2 \cdot ((v_{\textbf{j}_1}\star v_{\textbf{j}_3})\star (v_{\textbf{j}_2}\star (v_{\textbf{j}_1}\star (v_{\textbf{j}_1}\star v_{\textbf{j}_3})))). \end{array} $$

Example 5

The inequality \((p\otimes (q/r))\otimes ((s\backslash q)\wedge (s/t))\le (t\wedge (r/s))\backslash (t \otimes (p\vee q))\) is analytic \((\varOmega ,\varepsilon )\)-inductive for \(\varepsilon (p,q,r,s,t)=(\partial ,\partial ,\partial ,\partial ,1)\) and \(t<q<r<s\), \(t<p\). By distributing \(\otimes \) over \(\vee \) and applying the residuation rule, we get

$$\begin{aligned} (t\wedge (r/s))\otimes ((p\otimes (q/r))\otimes ((s\backslash q)\wedge (s/t)))\le (t\otimes p) \vee (t \otimes q). \end{aligned}$$

We show by the procedure in Sect. 3.2 that the inequality is inductive also for \(\varepsilon '(p,q,r,s,t) = (1,1,1,1,1)\). The definite positive PIAs in the formula are

$$\begin{aligned} \begin{array}{lclclclclcl} \alpha _1(t) &{} := &{} t &{} \quad \quad &{} \alpha _2(r, s) &{} := &{} r / s &{} \quad \quad &{} \alpha _3(p) &{} := &{} p \\ \alpha _4(q, r) &{} := &{} q/r &{} \quad \quad &{} \alpha _5(q, s) &{} := &{} s \backslash q &{} \quad \quad &{} \alpha _6(s, t) &{} := &{} s /t; \\ \end{array} \end{aligned}$$

hence, the sets \(Q_v\) are

$$\begin{aligned} \begin{array}{lclclclclcl} Q_p &{} = &{} \{ \} &{} \quad \quad \quad \quad &{} Q_q &{} = &{} \{ r, s \} &{} \quad \quad \quad \quad &{} Q_r &{} = &{} \{ s \} \\ Q_s &{} = &{} \{ t \} &{} \quad \quad \quad \quad &{} Q_t &{} = &{} \{ \}. &{} \end{array} \end{aligned}$$

Of course, \(\varepsilon ^{(0)}(p, q, r, s, t) = (\partial , \partial , \partial , \partial , 1)\) and \(\varOmega ^{(0)}\) is the smallest relation for which it is inductive, i.e. \(\{ (t, p), (t, q), (r, s), (q, r), (q, s), (t, r), (t, s) \}\).

The following table represents the steps of the procedure. At the i-th step, a variable \(v_i\) such that \(\varepsilon ^{(i-1)}(v_i) = \partial \) maximal w.r.t. \(\varOmega ^{(i - 1)}\) is picked, all the edges where it is an endpoint are removed from \(\varOmega ^{(i - 1)}\) (this is denoted by \(\varOmega ^{(i - 1)-}\)), and the edges in \(Q_{v_i} \times \{v_i\}\) are added in \(\varOmega ^{(i)}\).

Step

   \(v_i\)    

\(\varepsilon ^{(i)}(p,q,r,s,t)\)

\(\varOmega ^{(i-1)-}\)

\(\varOmega ^{(i)}\)

0

-

\((\partial , \partial , \partial , \partial , 1)\)

-

\(t<q<r<s\), \(t<p\)

1

s

\((\partial , \partial , \partial , 1, 1)\)

\(t<q<r\), \(t<p\)

\(t<q<r\), \(t<p\), \(t < s\)

2

p

\((1, \partial , \partial , 1, 1)\)

\(t<q<r\), \(t<s\)

\(t<q<r\), \(t<s\)

3

r

\((1, \partial , 1, 1, 1)\)

\(t<q\), \(t<s\)

\(t<q\), \(t<s<r\)

4

q

(1, 1, 1, 1, 1)

\(t<s<r\)

\(t<s<r<q\)

By Lemma 6, the inequality is \((\varepsilon ^{(i)}, \varOmega ^{(i)})\)-inductive for every \(i \in \{0, 1, 2, 3, 4 \}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palmigiano, A., Panettiere, M., Switrayni, N.W. (2024). Correspondence Theory on Vector Spaces. In: Metcalfe, G., Studer, T., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2024. Lecture Notes in Computer Science, vol 14672. Springer, Cham. https://doi.org/10.1007/978-3-031-62687-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62687-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62686-9

  • Online ISBN: 978-3-031-62687-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics