Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-perspective Concept Drift Detection: Including the Actor Perspective

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2024)

Abstract

Changes in processes manifest as concept drift in event logs. Drift detection aids in analyzing the nature of such change and its impact on the process. Process executions or cases are driven by actors and machines performing the actual work. Actors typically divide and structure their work into tasks—multiple consecutive actions performed together—before handing a case to the next actor. Process changes affect this work division and collaboration, potentially impacting performance and outcomes. However, existing research on concept drift detection from event logs has not yet focused on the behavior of actors. We generalize an existing concept drift detection technique to consider actor behavior and control-flow jointly by using a multi-layered event knowledge graph. We evaluate our proposal by comparing the theoretical properties of the newly defined actor perspective features with existing features and perform an experimental evaluation. The experiments showed actor features to be more robust with on average (up to factor 2.6) stronger signals for concept drift in two real-life datasets. Our approach led to new insights into global process changes, changes in behavior of individual actors, and change in collaborations between actors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/multi-dimensional-process-mining/ekg-bpic17-concept-drift-detection-multi-perspective.

  2. 2.

    Full BPIC’17 results available: https://zenodo.org/doi/10.5281/zenodo.10933096.

References

  1. Adams, J.N., van Zelst, S.J., Rose, T., van der Aalst, W.M.P.: Explainable concept drift in process mining. Inf. Syst. 114, 102177 (2023)

    Article  Google Scholar 

  2. Aggarwal, C.C.: Data Mining - The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

    Book  Google Scholar 

  3. Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2018)

    Google Scholar 

  4. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  5. Delcoucq, L., Lecron, F., Fortemps, P., van der Aalst, W.M.P.: Resource-centric process mining: clustering using local process models. In: SAC 2020, pp. 45–52. ACM (2020)

    Google Scholar 

  6. van Dongen, B.F.: BPI challenge 2017. Dataset (2017). https://doi.org/10.4121/12705737.v2

  7. Dumas, M., et al.: AI-augmented business process management systems: a research manifesto. ACM Trans. Manag. Inf. Syst. 14(1), 11:1–11:19 (2023)

    Google Scholar 

  8. El-Khawaga, G., Abu-Elkheir, M., Barakat, S.I., Riad, A.M., Reichert, M.: CONDA-PM - a systematic review and framework for concept drift analysis in process mining. Algorithms 13(7), 161 (2020)

    Article  Google Scholar 

  9. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10, 109–141 (2021)

    Article  Google Scholar 

  10. Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9

    Chapter  Google Scholar 

  11. van Hulzen, G.A.W.M., Li, C., Martin, N., van Zelst, S.J., Depaire, B.: Mining context-aware resource profiles in the presence of multitasking. Artif. Intell. Med. 134, 102434 (2022)

    Article  Google Scholar 

  12. Jans, M., Eulerich, M.: Process mining for financial auditing. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 445–467. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_15

    Chapter  Google Scholar 

  13. Jooken, L., Jans, M., Depaire, B.: Mining valuable collaborations from event data using the recency-frequency-monetary principle. In: CAiSE 2022. LNCS, vol. 13295, pp. 339–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_20

    Chapter  Google Scholar 

  14. Klijn, E.L., Mannhardt, F., Fahland, D.: Classifying and detecting task executions and routines in processes using event graphs. In: BPM 2021. LNBIP, vol. 427, pp. 212–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85440-9_13

    Chapter  Google Scholar 

  15. Klijn, E.L., Mannhardt, F., Fahland, D.: Aggregating event knowledge graphs for task analysis. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBIP, vol. 468, pp. 493–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-27815-0_36

    Chapter  Google Scholar 

  16. Kremser, W., Blagoev, B.: The dynamics of prioritizing: how actors temporally pattern complex role-routine ecologies. Adm. Sci. Q. 66(2), 339–379 (2021)

    Article  Google Scholar 

  17. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  18. Pentland, B., Feldman, M., Becker, M., Liu, P.: Dynamics of organizational routines: a generative model. J. Manag. Stud. 49, 1484–1508 (2012)

    Article  Google Scholar 

  19. Sato, D.M.V., Freitas, S.C.D., Barddal, J.P., Scalabrin, E.E.: A survey on concept drift in process mining. ACM Comput. Surv. 54(9), 189:1–189:38 (2022)

    Google Scholar 

  20. Tour, A., Polyvyanyy, A., Kalenkova, A.A.: Agent system mining: vision, benefits, and challenges. IEEE Access 9, 99480–99494 (2021)

    Article  Google Scholar 

  21. Wambui, G.D., Waititu, G.A., Wanjoya, A.K.: The power of the pruned exact linear time (PELT) test in multiple changepoint detection. AJTAS 4, 581–586 (2015)

    Article  Google Scholar 

  22. Wurm, B., Grisold, T., Mendling, J., vom Brocke, J.: Business process management and routine dynamics, pp. 513–524. Cambridge University Press (2021)

    Google Scholar 

  23. Yang, J., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M., Yu, Y.: OrdinoR: a framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 158, 113771 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L. Klijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klijn, E.L., Mannhardt, F., Fahland, D. (2024). Multi-perspective Concept Drift Detection: Including the Actor Perspective. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds) Advanced Information Systems Engineering. CAiSE 2024. Lecture Notes in Computer Science, vol 14663. Springer, Cham. https://doi.org/10.1007/978-3-031-61057-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61057-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61056-1

  • Online ISBN: 978-3-031-61057-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics