Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Ancient Architecture Virtual Learning Tour Through Virtual Embodiment: Impact on Immersion, Engagement, and Learning Outcomes

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14708))

Included in the following conference series:

  • 424 Accesses

Abstract

The integration of digital learning and ICT in architectural design education, particularly in studying ancient architecture, has been transformative. This study focuses on how virtual embodiment in VR affects learning experiences, engagement, and outcomes in ancient Chinese architecture education. A digital landscape of Nanchan Temple was created on VRchat for this purpose, involving 22 architecture students divided into two groups: one with a virtual body (VB group) and the other using only controllers (NB group). The study assessed a sense of embodiment, simulator sickness (SS), virtual tour experience, and a grasp of spatial information through questionnaires and task performance metrics. The VB group reported a stronger sense of embodiment in the virtual environment, indicating that a virtual body enhances engagement, contributes to a deeper understanding of architectural concepts, and improves learning quality in the educational experience. They also showed a higher sense of presence and were more efficient in completing interactive tasks, supporting the idea that virtual bodies improve spatial perception. However, the VB group experienced higher levels of SS, suggesting a challenge in aligning virtual and physical sensations. In conclusion, the presence of a virtual body in VR significantly improves immersion, engagement, and learning outcomes in architectural education, particularly in the context of ancient Chinese architecture. The study highlights the potential of virtual embodiment in educational scenarios and suggests the need for further technological improvements to mitigate simulator sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sayaf, A.M., Alamri, M.M., Alqahtani, M.A., Al-Rahmi, W.M.: Information and communications technology used in higher education: an empirical study on digital learning as sustainability. Sustainability. 13, 7074 (2021). https://doi.org/10.3390/su13137074

    Article  Google Scholar 

  2. Ummihusna, A., Zairul, M.: Investigating immersive learning technology intervention in architecture education: a systematic literature review. JARHE. 14, 264–281 (2022). https://doi.org/10.1108/jarhe-08-2020-0279

    Article  Google Scholar 

  3. Del, M.S.T.T., Tabrizi, S.K.: A methodological assessment of the importance of physical values in architectural conservation using Shannon entropy method. J. Cult. Herit. 44, 135–151 (2020). https://doi.org/10.1016/j.culher.2019.12.012

    Article  Google Scholar 

  4. Clarke, N., Kuipers, M., Stroux, S.: Embedding built heritage values in architectural design education. Int. J. Technol. Des. Educ. 30, 867–883 (2020). https://doi.org/10.1007/s10798-019-09534-4

    Article  Google Scholar 

  5. Banfi, F., Brumana, R., Stanga, C.: Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality. Virtual archaeol. rev. 10, 14 (2019). https://doi.org/10.4995/var.2019.11923

    Article  Google Scholar 

  6. Grace Cheng, W.Y., Lo, S.M., Fang, Z., Cheng, C.X.: A view on the means of fire prevention of ancient Chinese buildings – from religious belief to practice. Struct. Surv. 22(4), 201–209 (2004). https://doi.org/10.1108/02630800410563741

    Article  Google Scholar 

  7. Abdel-Moneim Gaffar, A.: Using metaverse to rebuild non-reachable or ruined heritage buildings. Int. J. Archit. Arts Appl. 7(4), 119 (2021). https://doi.org/10.11648/j.ijaaa.20210704.13

    Article  Google Scholar 

  8. Bevilacqua, M.G., Russo, M., Giordano, A., Spallone, R.: 3D reconstruction, digital twinning, and virtual reality: Architectural Heritage Applications. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). (2022). https://doi.org/10.1109/vrw55335.2022.00031

  9. Lindgren, R., Johnson-Glenberg, M.: Emboldened by embodiment. Educ. Res. 42, 445–452 (2013). https://doi.org/10.3102/0013189x13511661

    Article  Google Scholar 

  10. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence: Teleoperators Virtual Environ. 21(4), 373–387 (2012). https://doi.org/10.1162/PRES_a_00124

    Article  Google Scholar 

  11. Schultze, U.: Embodiment and presence in virtual worlds: a review. J. Inf. Technol. 25, 434–449 (2010). https://doi.org/10.1057/jit.2010.25

    Article  Google Scholar 

  12. Vecchiato, G., Tieri, G., Jelic, A., De Matteis, F., Maglione, A.G., Babiloni, F.: Electroencephalographic Correlates of Sensorimotor Integration and Embodiment during the Appreciation of Virtual Architectural Environments. Front. Psychol. 6, (2015).https://doi.org/10.1007/s10339-015-0725-6

  13. Iranmanesh, A., Onur, Z.: Mandatory virtual design studio for all: exploring the transformations of architectural education amidst the global pandemic. Int J Art Des. Ed. 40, 251–267 (2021). https://doi.org/10.1111/jade.12350

    Article  Google Scholar 

  14. Kreimeier, J., Theelke, L., Denzler, J., Enders, F., Kumar, S., Roth, D.: Towards eco-embodiment: virtual reality for building climate change awareness within education for sustainable development.In: 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). (2023). https://doi.org/10.1109/ismar-adjunct60411.2023.00130

  15. Bagher, M.M., Sajjadi, P., Wallgrün, J.O., LaFemina, P., Klippel, A.: Virtual reality for geospatial education: immersive technologies enhance sense of embodiment. Cartography Geogr. Inf. Sci. 50(3), 233–248 (2023). https://doi.org/10.1080/15230406.2022.2122569

    Article  Google Scholar 

  16. Bard, J.T., Chung, H.K., Shaia, J.K., Wellman, L.L., Elzie, C.A.: Increased medical student understanding of dementia through virtual embodiment. Gerontol. Geriatr. Educ. 44, 211–222 (2023). https://doi.org/10.1080/02701960.2022.2067850

    Article  Google Scholar 

  17. Mills, K.A., Scholes, L., Brown, A.: Virtual Reality and Embodiment in Multimodal Meaning Making. Writ. Commun. 39, 335–369 (2022). https://doi.org/10.1177/07410883221083517

    Article  Google Scholar 

  18. Steinhardt, N.: Chinese Architecture: A History. Princeton University Press (2019). https://doi.org/10.1515/9780691191973

    Book  Google Scholar 

  19. Maghool, S.A.H., Moeini, S.H. (Iradj), Arefazar, Y.: An educational application based on virtual reality technology for learning architectural details: challenges and benefits. ArchNet-IJAR. 12, 246 (2018). https://doi.org/10.26687/archnet-ijar.v12i3.1719

  20. Megahed, N., Hassan, A.: A blended learning strategy: reimagining the post-Covid-19 architectural education. ARCH. 16, 184–202 (2022). https://doi.org/10.1108/arch-04-2021-0081

    Article  Google Scholar 

  21. Salama, A.M.: Transformative Pedagogy in Architecture and Urbanism. Routledge (2021). https://doi.org/10.4324/9781003140047

    Book  Google Scholar 

  22. Sepasgozar, S.M.E.: Digital twin and web-based virtual gaming technologies for online education: a case of construction management and engineering. Appl. Sci. 10, 4678 (2020). https://doi.org/10.3390/app10134678

    Article  Google Scholar 

  23. Holzer, D.: BIM and parametric design in academia and practice: the changing context of knowledge acquisition and application in the digital age. Int. J. Archit. Comput. 13, 65–82 (2015). https://doi.org/10.1260/1478-0771.13.1.65

    Article  Google Scholar 

  24. Mulyadi, M.: Buku Ajar CAD/CAM (Computer Aided Design / Computer Aided Manufacturing). Umsida Press (2018). https://doi.org/10.21070/2018/978-602-5914-10-2

    Book  Google Scholar 

  25. Ibrahim, A., Al-Rababah, A.I., Bani Baker, Q.: Integrating virtual reality technology into architecture education: the case of architectural history courses. OHI. 46, 498–509 (2021). https://doi.org/10.1108/ohi-12-2020-0190

    Article  Google Scholar 

  26. Sopher, H., Kalay, Y.E., Fisher-Gewirtzman, D.: Why Immersive? - Using an immersive virtual environment in architectural education. In: Proceedings of the 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe). Vol 1, pp. 313–322 (2017). https://doi.org/10.52842/conf.ecaade.2017.1.313

  27. Ângulo, A., Velasco, G.V. de: Immersive Simulation of Architectural Spatial Experiences. Proceedings of the XVII Conference of the Iberoamerican Society of Digital Graphics - SIGraDi: Knowledge-based Design. (2013).https://doi.org/10.5151/despro-sigradi2013-0095

  28. Anthes, C., Garcia-Hernandez, R.J., Wiedemann, M., Kranzlmuller, D.: State of the art of virtual reality technology. In: 2016 IEEE Aerospace Conference. (2016). https://doi.org/10.1109/aero.2016.7500674

  29. Brooks, F.P.: What’s Real About Virtual Reality? Proceedings IEEE Virtual Reality (Cat. No. 99CB36316). https://doi.org/10.1109/vr.1999.756916

  30. Pallavicini, F., Pepe, A., Minissi, M.E.: Gaming in Virtual Reality: What Changes in Terms of Usability, Emotional Response and Sense of Presence Compared to Non-Immersive Video Games? Simul. Gaming 50, 136–159 (2019). https://doi.org/10.1177/1046878119831420

    Article  Google Scholar 

  31. Zhao, J., LaFemina, P., Carr, J., Sajjadi, P., Wallgrun, J.O., Klippel, A.: Learning in the Field: Comparison of Desktop, Immersive Virtual Reality, and Actual Field Trips for Place-Based STEM Education. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). (2020). https://doi.org/10.1109/vr46266.2020.1581091793502

  32. Shin, D.: Empathy and embodied experience in virtual environment: To what extent can virtual reality stimulate empathy and embodied experience? Comput. Hum. Behav. 78, 64–73 (2018). https://doi.org/10.1016/j.chb.2017.09.012

    Article  Google Scholar 

  33. Barfield, W., Zeltzer, D.: Presence and performance within virtual environments. Virtual Environ. And. Adv. Interface Des. (1995). https://doi.org/10.1093/oso/9780195075557.003.0023

    Article  Google Scholar 

  34. Slater, M., Sanchez-Vives, M.V.: Enhancing our lives with immersive virtual reality. Frontiers in Robot AI 3, 74 (2016). https://doi.org/10.3389/frobt.2016.00074

    Article  Google Scholar 

  35. Hong, S.W., Park, J., Cho, M.: Virtual vs. actual body: applicability of anthropomorphic avatars to enhance exploratory creativity in architectural design education. Architect. Sci. Rev. 62(6), 520–527 (2019). https://doi.org/10.1080/00038628.2019.1669526

    Article  Google Scholar 

  36. Trump, J., Shealy, T.: Effects of embodied and self-reflected virtual reality on engineering students’ design cognition about nature. Proc. Des. Soc. 3, 1575–1584 (2023). https://doi.org/10.1017/pds.2023.158

    Article  Google Scholar 

  37. Lindgren, R., Tscholl, M., Wang, S., Johnson, E.: Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Comput. Educ. 95, 174–187 (2016). https://doi.org/10.1016/j.compedu.2016.01.001

    Article  Google Scholar 

  38. Chan, C.-S., Bogdanovic, J., Kalivarapu, V.: Applying immersive virtual reality for remote teaching architectural history. Educ. Inf. Technol. 27, 4365–4397 (2022). https://doi.org/10.1007/s10639-021-10786-8

    Article  Google Scholar 

  39. Şahbaz, E.: VR-based interactive learning in architectural education: a case on safranbolu historical bathhouse. Iconarp Int. J. Archit. Planning 8(1), 342–356 (2020). https://doi.org/10.15320/ICONARP.2020.116

    Article  Google Scholar 

  40. Ge, Y.: Teaching research on “experience” architecture history with VR technology. Frontier High. Educ. 1(1), 5–9 (2019). https://doi.org/10.36012/fhe.v1i1.569

    Article  Google Scholar 

  41. Huang, J., Gao, H.: Performance and application of virtual reality technology (VR) in digital protection of buildings. IOP Conf. Ser.: Earth Environ. Sci. 508(1), 012170 (2020). https://doi.org/10.1088/1755-1315/508/1/012170

    Article  Google Scholar 

  42. Kwon, H., et al.: Understanding audiences for immersive and interactive museum and gallery experiences and cultural exchanges. Proc. Des. Soc. 3, 3691–3700 (2023). https://doi.org/10.1017/pds.2023.370

    Article  Google Scholar 

  43. He, F.: Restoration design of chu architecture: zhanghua tower based on VR technology. Comput. Intell. Neurosci. 2022, 1–8 (2022). https://doi.org/10.1155/2022/1310462

    Article  Google Scholar 

  44. Thiwanka, M.D., Senanayake, W.S.V., Ranasinghe, R.H.A.C.N., Supeshala, P.K.C., Jayaweera, Y.D.: Purawalokanaya - the virtual tour to ancient city of polonnaruwa - Sri Lanka. Int. J. Comput. Appl. 179(12), 14–19 (2018). https://doi.org/10.5120/ijca2018916130

    Article  Google Scholar 

  45. Steinhardt, N.S.: The tang architectural icon and the politics of Chinese architectural history. Art Bull. 86, 228 (2004). https://doi.org/10.2307/3177416

    Article  Google Scholar 

  46. Roth, D., Latoschik, M.E.: Construction of the virtual embodiment questionnaire (VEQ). IEEE Trans. Vis. Comput. Graph. 26, 3546–3556 (2020). https://doi.org/10.1109/tvcg.2020.3023603

    Article  Google Scholar 

  47. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  48. Sutcliffe, A., Gault, B.: Heuristic evaluation of virtual reality applications. Interact. Comput. 16, 831–849 (2004). https://doi.org/10.1016/j.intcom.2004.05.001

    Article  Google Scholar 

  49. Kabassi, K., Amelio, A., Komianos, V., Oikonomou, K.: Evaluating museum virtual tours: the case study of Italy. Information 10, 351 (2019). https://doi.org/10.3390/info10110351

    Article  Google Scholar 

  50. Slater, M.: Inducing illusory ownership of a virtual body. Front. Neurosci. 3, 214–220 (2009). https://doi.org/10.3389/neuro.01.029.2009

    Article  Google Scholar 

  51. Slater, M., Spanlang, B., Sanchez-Vives, M.V., Blanke, O.: First person experience of body transfer in virtual reality. PLoS ONE 5, e10564 (2010). https://doi.org/10.1371/journal.pone.0010564

    Article  Google Scholar 

  52. Cho, J.Y., Suh, J.: Spatial ability performance in interior design and architecture: comparison of static and virtual reality modes. Buildings 13, 3128 (2023). https://doi.org/10.3390/buildings13123128

    Article  Google Scholar 

  53. Horvat, N., Martinec, T., Lukačević, F., Perišić, M.M., Škec, S.: The potential of immersive virtual reality for representations in design education. Virtual Reality 26, 1227–1244 (2022). https://doi.org/10.1007/s10055-022-00630-w

    Article  Google Scholar 

  54. Berger, C.C., Lin, B., Lenggenhager, B., Lanier, J., Gonzalez-Franco, M.: Follow your nose: extended arm reach after pinocchio illusion in virtual reality. Frontiers Virtual Reality 3, 712375 (2022). https://doi.org/10.3389/frvir.2022.712375

    Article  Google Scholar 

  55. Saunders, J.A., Knill, D.C.: Visual feedback control of hand movements. J. Neurosci. 24, 3223–3234 (2004). https://doi.org/10.1523/jneurosci.4319-03.2004

    Article  Google Scholar 

  56. Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., Fink, G.R.: Neural Correlates of First-Person Perspective as One Constituent of Human Self-Consciousness. 16, 817–827 (2004). https://doi.org/10.1162/089892904970799

  57. Lugrin, J.-L., Latt, J., Latoschik, M.E.: Avatar anthropomorphism and illusion of body ownership in VR. 2015 IEEE Virtual Reality (VR). (2015). https://doi.org/10.1109/vr.2015.7223379

  58. Kim, J., Kim, W., Ahn, S., Kim, J., Lee, S.: Virtual reality sickness predictor: analysis of visual-vestibular conflict and VR contents. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). (2018). https://doi.org/10.1109/qomex.2018.8463413

  59. Chang, E., Kim, H.T., Yoo, B.: Virtual Reality sickness: a review of causes and measurements. Int. J. Hum-Comput. Int. 36, 1658–1682 (2020). https://doi.org/10.1080/10447318.2020.1778351

    Article  Google Scholar 

  60. Conner, N.O., et al.: Virtual reality induced symptoms and effects: concerns, causes. Assess. Mitig. Virtual Worlds. 1, 130–146 (2022). https://doi.org/10.3390/virtualworlds1020008

    Article  Google Scholar 

  61. Jasper, A., Cone, N., Meusel, C., Curtis, M., Dorneich, M.C., Gilbert, B.: Visually induced motion sickness susceptibility and recovery based on four mitigation techniques. Frontiers in Virtual Reality 1, 582108 (2020). https://doi.org/10.3389/frvir.2020.582108

    Article  Google Scholar 

  62. Shi, R., Liang, H.-N., Wu, Y., Yu, D., Xu, W.: Virtual reality sickness mitigation methods. Proc. ACM Comput. Graph. Interact. Tech. 4, 1–16 (2021). https://doi.org/10.1145/3451255

    Article  Google Scholar 

  63. Mohler, B.J., Creem-Regehr, S.H., Thompson, W.B., Bülthoff, H.H.: The effect of viewing a self-avatar on distance judgments in an HMD-based virtual environment. Presence: Teleoperators Virtual Environ. 19(3), 230–242 (2010). https://doi.org/10.1162/pres.19.3.230

    Article  Google Scholar 

  64. van der Hoort, B., Ehrsson, H.H.: Body ownership affects visual perception of object size by rescaling the visual representation of external space. Atten. Percept. Psychophys. 76, 1414–1428 (2014). https://doi.org/10.3758/s13414-014-0664-9

    Article  Google Scholar 

Download references

Acknowledgments

This study was generously supported by a grant from the Shanghai Jiao Tong University’s USC-SJTU Institute of Cultural and Creative Industry (ICCI). The authors extend their gratitude to ICCI for their support and belief in the potential of this research. Special thanks are also to the faculty and students of the Department of Architecture at Huaqiao University for their participation and insightful feedback. The authors acknowledge the contributions of all who have supported and facilitated this research, directly or indirectly, in making this study possible.

The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Shen, S., Hua, M. (2024). Enhancing Ancient Architecture Virtual Learning Tour Through Virtual Embodiment: Impact on Immersion, Engagement, and Learning Outcomes. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2024. Lecture Notes in Computer Science, vol 14708. Springer, Cham. https://doi.org/10.1007/978-3-031-61047-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61047-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61046-2

  • Online ISBN: 978-3-031-61047-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics