Abstract
This article deals with a practical and synthetic view of conceptual modelling. It suggests four graph database normal forms organised into two levels of conceptual modelling: data and metadata, with room for yet one conceivable graph normal form based on old approaches, such as object-oriented class normalisation and the idea of conceptual symmetry. Attention is also paid to bridging the semantic gap between a database on the server side and a programming language on the client side, which argues for using graph databases as better data sources for business intelligence systems and working with machine learning language models. The authors applied their practical experience in teaching database modelling at a university and many years of experience in software development in Smalltalk, Python, Java, and C#.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambler, S.W.: Agile Database Techniques: Effective Strategies for the Agile Software Developer, Wiley Publishing, Inc., Hoboken (2003). ISBN 978-0-471-20283-7
Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008). https://doi.org/10.1145/1322432.1322433
Bechberger, D., Perryman, J.J.: Graph databases in action (2020). ISBN: 9789332526280
Catell, R., Atwood, T.: The object database standard: ODMG-93, Morgan Kaufmann Series in Data Management Systems (1996). ISBN 978-1558603967
Chen, Y., Xing, X.: Constructing dynamic knowledge graph based on ontology modeling and neo4j graph database. In: proceedings of 5th International Conference on Artificial Intelligence and Big Data (ICAIBD) 2022, Chengdu, China, pp. 522–525 (2022). https://doi.org/10.1109/ICAIBD55127.2022.9820199
Coad, P., Yourdon, E.: Object-oriented design. Yourdon Press and Prentice Hall Inc. (1991). ISBN 0-13-630070-7
Codd, E., Rustin, R.: Further Normalisation of the Database Relational Model in Database Systems, Prentice Hall, Hoboken (1972)
Falleri, J.R., Huchard, M., Nebut, C.: A generic approach for class model normalisation. In: Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008). IEEE Computer Society, Washington, DC, USA, pp. 431–434 (2008). https://doi.org/10.1109/ASE.2008.66
Frisendal, T.: Say Hello to Graph Normal Form (GNF), Dataversity publication (2022). https://www.dataversity.net/say-hello-to-graph-normal-form-gnf/
Huang, F., et al.: KOSA: KO enhanced salary analytics based on knowledge graph and LLM capabilities. In: proceeding of IEEE International Conference on Data Mining Workshops (ICDMW), vol. 2023, pp. 499–505 (2023). https://doi.org/10.1109/ICDMW60847.2023.00071
ISO/IEC FDIS 39075 - Information technology - Database languages (2024). GQL standard under development. https://www.iso.org/standard/76120.html
ISO/IEC 24707 - Information technology, common logic - a framework for a family of logic-based languages (2023). https://www.iso.org/standard/66249.html
Lissandrini, M., Mottin, D., Palpanas, T., Velegrakis, Y.: Graph-query suggestions for knowledge graph exploration. In: Proceedings of The Web Conference 2020 - WWW 2020 (2020). https://doi.org/10.1145/3366423.3380005
Lo, S.H., Shiue, Y.C., Liu, K.F.: Seven steps for object-oriented normalisation in class diagrams: Example of jigsaw puzzle concept for image retrieval. J. Appl. Sci. Eng. 21, 463–474 (2018). https://doi.org/10.6180/jase.201809_21(3).0018
Meier A., Kaufman, M.: SQL & NoSQL Databases, Springer, Cham (2019). ISBN 978-3-658-24548-1
Molhanec, M.: Conceptual normalisation in software engineering. In: Proceedings of the Enterprise and Organizational Modeling and Simulation. EOMAS 2019. LNBIP, vol. 366, pp. 18–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35646-0_2
Robinson, I., Webber, J., Eifrem, E.E.: Graph Databases - New Opportunities for Connected Data, O’Reilly Media, Inc., Sebastopol (2015). ISBN 978-1-491-93200-1
Zhou, B., Li, X., Liu, T., Xu, K., Liu, W., Bao, J.: CausalKGPT: industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. In: Advanced Engineering Informatics vol. 59 (2024). https://doi.org/10.1016/j.aei.2023.102333
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Merunka, V., Wijekoon, H., Beránek, P. (2024). Conceptual Data Normalisation from the Practical View of Using Graph Databases. In: Almeida, J.P.A., Di Ciccio, C., Kalloniatis, C. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in Business Information Processing, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-031-61003-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-61003-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61002-8
Online ISBN: 978-3-031-61003-5
eBook Packages: Computer ScienceComputer Science (R0)