Abstract
Blind and visually impaired individuals use tactile graphics to interpret any type of image, figure, or graph. However, the production of these materials is resource exhaustive—taking a lot of time, quality assurance, and money. This research project uses recent advancements in electrotactile feedback to provide an accurate and timely approach to data visualizations of users who are blind or visually impaired. For this, we developed Electromouse, a mouse-based prototype where users can navigate the screen and feel an electrotactile sensation every time the cursor hits a significant line on the graphic presented on the screen. We performed an early exploration study with five blind adults to evaluate the effectiveness and safety of the prototype. Overall, participants were excited for this new method, but had suggestions for improvement related to the form factor, additional graphical information, and multimodal notification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akamatsu, M., Sato, S., MacKenzie, I.S.: Multimodal mouse: a mouse-type device with tactile and force display. Presence: Teleoperators Virtual Environ. 3(1), 73–80 (1994)
Beck-Winchatz, B., Riccobono, M.A.: Advancing participation of blind students in science, technology, engineering, and math. Adv. Space Res. 42(11), 1855–1858 (2008). Publisher: Elsevier
For the Blind, A.F.: Statistics about children and youth with vision loss. https://www.afb.org/research-and-initiatives/statistics/statistics-blind-children#population18
Bornschein, J., Prescher, D., Weber, G.: Collaborative creation of digital tactile graphics. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp. 117–126. ASSETS ’15, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2700648.2809869, event-place: Lisbon, Portugal
Bornschein, J., Prescher, D., Weber, G.: Inclusive production of tactile graphics. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9296, pp. 80–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22701-6_7
Chen, Z., Peng, W., Peiris, R., Minamizawa, K.: Thermoreality: thermally enriched head mounted displays for virtual reality. In: ACM SIGGRAPH 2017 Posters. SIGGRAPH ’17, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3102163.3102222
Edens, K., Potter, E.: How students “unpack” the structure of a word problem: graphic representations and problem solving. School Sci. Math. 108(5), 184–196 (2008)
Gardner, J.A.: Tactile graphics: an overview and resource guide. Inf. Technol. Disabil. 3(4) (1996). Publisher: EASI: Equal Access to Software and Information
Gardner, J.A.: Access by blind students and professionals to mainstream math and science. In: Miesenberger, K., Klaus, J., Zagler, W. (eds.) ICCHP 2002. LNCS, vol. 2398, pp. 502–507. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45491-8_94
Grabowski, N.A., Barner, K.E.: Data visualization methods for the blind using force feedback and sonification. In: Telemanipulator and Telepresence Technologies V, vol. 3524, pp. 131–139. International Society for Optics and Photonics (1998)
Guinness, D., Muehlbradt, A., Szafir, D., Kane, S.K.: RoboGraphics: dynamic tactile graphics powered by mobile robots. In: The 21st International ACM SIGACCESS Conference on Computers and Accessibility, pp. 318–328 (2019)
Holloway, L., Marriott, K., Butler, M.: Accessible maps for the blind: comparing 3D printed models with tactile graphics. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018)
Hughes, R.G., Forrest, A.R.: Perceptualisation using a tactile mouse. In: Proceedings of Seventh Annual IEEE Visualization’96, pp. 181–188. IEEE (1996)
Jitendra, A.: Teaching students math problem-solving through graphic representations. Teach. Except. Child. 34(4), 34–38 (2002)
Kajimoto, H.: Electrotactile display with real-time impedance feedback using pulse width modulation. IEEE Trans. Haptics 5(2), 184–188 (2012). https://doi.org/10.1109/TOH.2011.39
Kajimoto, H.: Electro-tactile display kit for fingertip. In: 2021 IEEE World Haptics Conference (WHC), pp. 587–587 (2021). https://doi.org/10.1109/WHC49131.2021.9517192
Kajimoto, H., Kanno, Y., Tachi, S.: Forehead electro-tactile display for vision substitution. In: Proceedings of EuroHaptics, p. 11. Citeseer (2006)
Kamarushi, M.V., Watson, S.L., Tigwell, G.W., Peiris, R.L.: OneButtonPIN: a single button authentication method for blind or low vision users to improve accessibility and prevent eavesdropping. Proc. ACM Hum.-Comput. Interact. 6(MHCI) (2022). https://doi.org/10.1145/3546747
Keilers, C., Tigwell, G.W., Peiris, R.L.: Data visualization accessibility for blind and low vision audiences. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction, pp. 399–413. Springer Nature Switzerland, Cham (2023)
Keogh, R., Pearson, J.: The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2018)
Kim, J., Lee, Y., Seo, I.: Math graphs for the visually impaired: audio presentation of elements of mathematical graphs. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2019)
Ladner, R.E., et al.: Automating tactile graphics translation. In: Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 150–157. Assets ’05, Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1090785.1090814, event-place: Baltimore, MD, USA
Maeda, T., Peiris, R., Nakatani, M., Tanaka, Y., Minamizawa, K.: Wearable haptic augmentation system using skin vibration sensor. In: Proceedings of the 2016 Virtual Reality International Conference. VRIC ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2927929.2927946
McGookin, D.K., Brewster, S.A.: SoundBar: Exploiting multiple views in multimodal graph browsing. In: Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, pp. 145–154. NordiCHI ’06, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1182475.1182491
Owen, J.M., Petro, J.A., D’Souza, S.M., Rastogi, R., Pawluk, D.T.: An improved, low-cost tactile ‘mouse’ for use by individuals who are blind and visually impaired. In: Proceedings of the 11th international ACM SIGACCESS Conference on Computers and Accessibility, pp. 223–224 (2009)
Petit, G., Dufresne, A., Levesque, V., Hayward, V., Trudeau, N.: Refreshable tactile graphics applied to schoolbook illustrations for students with visual impairment. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 89–96 (2008)
Prescher, D., Bornschein, J., Weber, G.: Production of accessible tactile graphics. In: Computers Helping People with Special Needs, pp. 26–33. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-08599-9_5, https://go.exlibris.link/vvHqcF10
Race, L., Kearney-Volpe, C., Fleet, C., Miele, J.A., Igoe, T., Hurst, A.: Designing educational materials for a blind Arduino workshop. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2020)
Rahimi, S.M.: FingerEye: an Electrotactile-mechanism enabled adaptive sensory-substitution aid for the blind and visually impaired. Ph.D. thesis (2019)
Rajaei, N., Ohka, M., Nomura, H., Komura, H., Matsushita, S., Miyaoka, T.: Tactile mouse generating velvet hand illusion on human palm. Int. J. Adv. Rob. Syst. 13(5), 1729881416658170 (2016)
Rastogi, R., Pawluk, D.T., Ketchum, J.M.: Issues of using tactile mice by individuals who are blind and visually impaired. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 311–318 (2010)
Rosenblum, L.P., Herzberg, T.S.: Braille and tactile graphics: youths with visual impairments share their experiences. J. Vis. Impairment Blindness 109(3), 173–184 (2015), publisher: SAGE Publications Sage CA: Los Angeles, CA
Sharif, A., Chintalapati, S.S., Wobbrock, J.O., Reinecke, K.: Understanding screen-reader users’ experiences with online data visualizations. In: The 23rd International ACM SIGACCESS Conference on Computers and Accessibility. ASSETS ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3441852.3471202
Smith, D.W., Smothers, S.M.: The role and characteristics of tactile graphics in secondary mathematics and science textbooks in braille. J. Vis. Impairment Blindness 106(9), 543–554 (2012), publisher: SAGE Publications Sage CA: Los Angeles, CA
Taylor, B., Dey, A., Siewiorek, D., Smailagic, A.: Customizable 3D printed tactile maps as interactive overlays. In: Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 71–79 (2016)
Tirado, J., Panov, V., Yem, V., Tsetserukou, D., Kajimoto, H.: ElectroAR: distributed electro-tactile stimulation for tactile transfer. In: Nisky, I., Hartcher-O’Brien, J., Wiertlewski, M., Smeets, J. (eds.) EuroHaptics 2020. LNCS, vol. 12272, pp. 442–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58147-3_49
Van Scoy, F., McLaughlin, D., Fullmer, A.: Auditory augmentation of haptic graphs: developing a graphic tool for teaching precalculus skill to blind students. In: Proceedings of the 11th Meeting of the International Conference on Auditory Display, vol. 5. Citeseer (2005)
Vandana, A.S.: Trends and challenges in the world of the blind for education in mathematics. J. Positive School Psychol., 1213–1229 (2022)
Varma, M., Watson, S., Chan, L., Peiris, R.: Vibroauth: Authentication with haptics based non-visual, rearranged keypads to mitigate shoulder surfing attacks. In: Moallem, A. (ed.) HCI for Cybersecurity, Privacy and Trust, pp. 280–303. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-05563-8_19
Wang, Y., Li, Z., Chelladurai, P.K., Dannels, W., Oh, T., Peiris, R.L.: Haptic-captioning: using audio-haptic interfaces to enhance speaker indication in real-time captions for deaf and hard-of-hearing viewers. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581076
Yu, W., Ramloll, R., Brewster, S.: Haptic graphs for blind computer users. In: Brewster, S., Murray-Smith, R. (eds.) Haptic HCI 2000. LNCS, vol. 2058, pp. 41–51. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44589-7_5
Zhang, X., et al.: Interactiles: 3D printed tactile interfaces to enhance mobile touchscreen accessibility. In: Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 131–142 (2018)
Zhao, H., Plaisant, C., Shneiderman, B., Lazar, J.: Data sonification for users with visual impairment: a case study with georeferenced data. ACM Trans. Comput.-Hum. Interact. 15(1) (2008). https://doi.org/10.1145/1352782.1352786
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Milallos, R., Oh, T., Peiris, R.L. (2024). Exploring the Effectiveness of Electrotactile Feedback for Data Visualization for Blind and Visually Impaired Users. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. HCII 2024. Lecture Notes in Computer Science, vol 14698. Springer, Cham. https://doi.org/10.1007/978-3-031-60884-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-60884-1_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60883-4
Online ISBN: 978-3-031-60884-1
eBook Packages: Computer ScienceComputer Science (R0)