Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Metaheuristic Efficiency for Stochastic Optimization by Sequential Predictive Sampling

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

Metaheuristics are known to be effective in finding good solutions in combinatorial optimization, but solving stochastic problems is costly due to the need for evaluation of multiple scenarios. We propose a general method to reduce the number of scenario evaluations per solution and thus improve metaheuristic efficiency. We use a sequential sampling procedure exploiting estimates of the solutions’ expected objective values. These values are obtained with a predictive model, which is founded on an estimated discrete probability distribution linearly related to all solutions’ objective distributions; the probability distribution is continuously refined based on incoming solution evaluation. The proposed method is tested using simulated annealing, but in general applicable to single solution metaheuristics. The method’s performance is compared to descriptive sampling and an adaptation of a sequential sampling method assuming noisy evaluations. Experimental results on three problems indicate the proposed method is robust overall, and performs better on average than the baselines on two of the problems.

K. Postek—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240, 351–380 (2016). https://doi.org/10.1007/s10479-015-2019-x

    Article  MathSciNet  Google Scholar 

  2. Ball, R.C., Branke, J., Meisel, S.: Optimal sampling for simulated annealing under noise. INFORMS J. Comput. 30, 200–215 (2018). https://doi.org/10.1287/ijoc.2017.0774

    Article  MathSciNet  Google Scholar 

  3. Ballestín, F.: When it is worthwhile to work with the stochastic RCPSP? J. Sched. 10, 153–166 (2007). https://doi.org/10.1007/s10951-007-0012-1

    Article  MathSciNet  Google Scholar 

  4. Ballestín, F., Leus, R.: Resource-constrained project scheduling for timely project completion with stochastic activity durations. Prod. Oper. Manag. 18, 459–474 (2009). https://doi.org/10.1111/j.1937-5956.2009.01023.x

    Article  Google Scholar 

  5. Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. ORSIS, vol. 39, pp. 261–273. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-71921-4_14

    Chapter  Google Scholar 

  6. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966). https://doi.org/10.1126/science.153.3731.34

    Article  Google Scholar 

  7. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287 (2009). https://doi.org/10.1007/s11047-008-9098-4

    Article  MathSciNet  Google Scholar 

  8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

  9. Bouneffouf, D., Rish, I., Aggarwal, C.: Survey on applications of multi-armed and contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. (2020). https://doi.org/10.1109/CEC48606.2020.9185782

  10. Bulgak, A.A., Sanders, J.L.: Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems. In: 1988 Winter Simulation Conference Proceedings, pp. 684–690. (1988). https://doi.org/10.1109/WSC.1988.716241

  11. Chen, Z., Demeulemeester, E., Bai, S., Guo, Y.: Efficient priority rules for the stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 270, 957–967 (2018). https://doi.org/10.1016/j.ejor.2018.04.025

    Article  MathSciNet  Google Scholar 

  12. Dumouchelle, J., Julien, E., Kurtz, J., Khalil, E.B.: Neur2ro: neural two-stage robust optimization. arXiv preprint (2023). https://doi.org/10.48550/ARXIV.2310.04345

  13. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton (1995). https://doi.org/10.1201/9780429258411

  14. Groves, M., Branke, J.: Sequential sampling for noisy optimisation with CMA-ES. In: Proceedings of the 2018 Genetic and Evolutionary Computation Conference, pp. 1023–1030. Association for Computing Machinery, Inc., (2018). https://doi.org/10.1145/3205455.3205559

  15. Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015). https://doi.org/10.1016/j.orp.2015.03.001

    Article  MathSciNet  Google Scholar 

  16. Juan, A.A., et al.: A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics. Ann. Oper. Res. (2021). https://doi.org/10.1007/s10479-021-04142-9

    Article  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  Google Scholar 

  18. Kleywegt, A.J., Shapiro, A., Homem-de-mello, T.: The sample average approximation method for stochastic discrete optimization. Soc. Ind. Appl. Math. 12, 479–502 (2001). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  Google Scholar 

  19. Kolisch, S.: Psplib a project scheduling problem library. Eur. J. Oper. Res. 96, 205–216 (1996). https://doi.org/10.1016/S0377-2217(96)00170-1

    Article  Google Scholar 

  20. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz, J. (eds.) Project Scheduling. International Series in Operations Research & Management Science, LNCS, vol. 14, pp. 147–178. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4615-5533-9_7

  21. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108571401

  22. Lei, H., Laporte, G., Guo, B.: The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38, 1775–1783 (2011). https://doi.org/10.1016/j.cor.2011.02.007

    Article  MathSciNet  Google Scholar 

  23. Liu, N., Truong, V.A., Wang, X., Anderson, B.R.: Integrated scheduling and capacity planning with considerations for patients’ length-of-stays. Prod. Oper. Manag. 28, 1735–1756 (2019). https://doi.org/10.1111/poms.13012

    Article  Google Scholar 

  24. Min, D., Yih, Y.: Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur. J. Oper. Res. 206, 642–652 (2010). https://doi.org/10.1016/j.ejor.2010.03.014

    Article  MathSciNet  Google Scholar 

  25. Prudius, A.A., Andradóttir, S.: Averaging frameworks for simulation optimization with applications to simulated annealing. Nav. Res. Logist. 59, 411–429 (2012). https://doi.org/10.1002/nav.21496

    Article  MathSciNet  Google Scholar 

  26. Rahimi, I., Gandomi, A.H.: A comprehensive review and analysis of operating room and surgery scheduling. Arch. Comput. Methods Eng. 28, 1667–1688 (2021). https://doi.org/10.1007/s11831-020-09432-2

    Article  Google Scholar 

  27. Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 54, 215–231 (2016). https://doi.org/10.1080/00207543.2015.1043403

    Article  Google Scholar 

  28. Rostami, S., Creemers, S., Leus, R.: New strategies for stochastic resource-constrained project scheduling. J. Sched. 21, 349–365 (2018). https://doi.org/10.1007/s10951-016-0505-x

    Article  MathSciNet  Google Scholar 

  29. Saliby, E.: Descriptive sampling: a better approach to Monte Carlo simulation. Source J. Oper. Res. Soc. 41, 1133–1142 (1990). https://doi.org/10.2307/2583110

  30. Schutte, N.: Codebase experiments sequential predictive sampling. https://github.com/NoahJSchutte/sequential-predictive-sampling. Accessed 21 Mar 2024

  31. Schutte, N., van den Houten, K., Eigbe, E.: Dynamic scenario reduction for simulation based optimization under uncertainty, working notes of the data science meets optimisation workshop at IJCAI 2022. https://drive.google.com/file/d/1kxzgO8ZhW2bjXo1vwVskK4_5LNRbp5vj/view?usp=sharing. Accessed 21 Mar 2024

  32. Seyyedabbasi, A.: A reinforcement learning-based metaheuristic algorithm for solving global optimization problems. Adv. Eng. Softw. 178, 103411 (2023). https://doi.org/10.1016/j.advengsoft.2023.103411

    Article  Google Scholar 

  33. Shehadeh, K.S.: Data-driven distributionally robust surgery planning in flexible operating rooms over a wasserstein ambiguity. Comput. Oper. Res. 146 (2022). https://doi.org/10.1016/j.cor.2022.105927

  34. Shehadeh, K.S., Zuluaga, L.F.: 14th AIMMS-MOPTA optimization modeling competition 2022: surgery scheduling in flexible operating rooms under uncertainty. https://iccopt2022.lehigh.edu/ competition-and-prizes/aimms-mopta-competition/. Accessed 21 Mar 2024

  35. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35, 254–265 (1987). https://doi.org/10.1287/opre.35.2.254

    Article  MathSciNet  Google Scholar 

  36. Vajda, S.: Mathematical Programming. Courier Corporation, Chelmsford (2009)

    Google Scholar 

  37. Zakaria, A., Ismail, F.B., Lipu, M.S., Hannan, M.A.: Uncertainty models for stochastic optimization in renewable energy applications. Renew. Energy 145, 1543–1571 (2020). https://doi.org/10.1016/j.renene.2019.07.081

    Article  Google Scholar 

  38. Zhu, S., Fan, W., Yang, S., Pei, J., Pardalos, P.M.: Operating room planning and surgical case scheduling: a review of literature. J. Comb. Optim. 37, 757–805 (2019). https://doi.org/10.1007/s10878-018-0322-6

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their suggestions. This work was partially supported by Epistemic AI and by TAILOR, both funded by EU Horizon 2020 under grants 964505 and 952215 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Schutte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schutte, N., Postek, K., Yorke-Smith, N. (2024). Improving Metaheuristic Efficiency for Stochastic Optimization by Sequential Predictive Sampling. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60599-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60601-4

  • Online ISBN: 978-3-031-60599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics