Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spanning Thread: A Multidimensional Classification Method for Efficient Data Center Management

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2109))

Included in the following conference series:

  • 332 Accesses

Abstract

Data originating from diverse sources, including relational and NoSQL databases, web pages, texts, images, recordings, and videos, are expanding in both size and complexity. Navigating through these vast datasets poses significant challenges. As the volume of data grows, the complexity of analysis intensifies. Multidimensional data analysis requires effective organization of the data, and different ranking methods can help achieve this goal. Ranking is a way to create a linear order of the data items that reflects their similarity or importance. The essence of ranking lies in providing a systematic way to traverse the entirety of a dataset, from its inception to its conclusion. In this paper, we introduce a novel method named “Spanning Thread" (ST) for classification and ranking multidimensional data. ST aims to establish a meaningful path connecting all data points and starts with a randomly selected data. Additionally, we present OST (Ordered Spanning Thread), which commences with the minimum virtual data and concludes with the maximum virtual data. Both methods are evaluated using an open dataset, wherein we measure the frequency of class changes to assess their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.univ-reims.fr/demetere.

References

  1. Bharadiya, J.: A tutorial on principal component analysis for dimensionality reduction in machine learning. Int. J. Innov. Res. Sci. Eng. Technol. 8, 2028–2032 (2023)

    Google Scholar 

  2. Borda, J.: Mémoire sur les élections au scrutin. Histoire de l’Académie royale des sciences, Paris (1781)

    Google Scholar 

  3. Boucetta, C., Hussenet, L., Herbin, M.: Practical method for multidimensional data ranking: Application for virtual machine migration. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2022, vol. 1585, pp. 267–277. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06668-9_19

    Chapter  Google Scholar 

  4. Boucetta, C., Hussenet, L., Herbin, M.: Improved euclidean distance in the k nearest neighbors method. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2023, vol. 1876, pp. 315–324. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-40852-6_17

    Chapter  Google Scholar 

  5. Condorcet, N.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)

    Google Scholar 

  6. Herbin, M., Aït-Younes, A., Blanchard, F., Gillard, D.: Rank-based similarity index (rbsi) in a multidimensional dataset. In: Lüke, K.H., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2019, vol. 1041, pp. 159–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22482-0_12

    Chapter  Google Scholar 

  7. Herrero, C., Villar, A.: Group decisions from individual rankings: the borda-condorcet rule. Eur. J. Oper. Res. 291, 757–765 (2020)

    Article  MathSciNet  Google Scholar 

  8. Jolliffe, I., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 374, 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kemeny, J.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)

    Google Scholar 

  10. Mekala, M.S., Viswanathan, P.: Energy-efficient virtual machine selection based on resource ranking and utilization factor approach in cloud computing for iot. Comput. Electr. Eng. 73, 227–244 (2019)

    Article  Google Scholar 

  11. Seo, J., Shneiderman, B.: A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In: IEEE Symposium on Information Visualization, pp. 65–72 (2004)

    Google Scholar 

  12. Tharwat, A.: Principal component analysis - a tutorial. Int. J. Appl. Pattern Recogn. 3, 197 (2016)

    Article  Google Scholar 

  13. Wang, H., Lu, H., Sun, J., Safo, S.: Interpretable deep learning methods for multiview learning. BMC Bioinf. 25, 1–30 (2024)

    Article  Google Scholar 

  14. Zhang, Y., Zhang, W., Pei, J., Lin, X., Lin, Q., Li, A.: Consensus-based ranking of multivalued objects: a generalized borda count approach. IEEE Trans. Knowl. Data Eng. 26, 83–96 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérifa Boucetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussenet, L., Boucetta, C., Herbin, M. (2024). Spanning Thread: A Multidimensional Classification Method for Efficient Data Center Management. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60433-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60432-4

  • Online ISBN: 978-3-031-60433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics