Abstract
Data originating from diverse sources, including relational and NoSQL databases, web pages, texts, images, recordings, and videos, are expanding in both size and complexity. Navigating through these vast datasets poses significant challenges. As the volume of data grows, the complexity of analysis intensifies. Multidimensional data analysis requires effective organization of the data, and different ranking methods can help achieve this goal. Ranking is a way to create a linear order of the data items that reflects their similarity or importance. The essence of ranking lies in providing a systematic way to traverse the entirety of a dataset, from its inception to its conclusion. In this paper, we introduce a novel method named “Spanning Thread" (ST) for classification and ranking multidimensional data. ST aims to establish a meaningful path connecting all data points and starts with a randomly selected data. Additionally, we present OST (Ordered Spanning Thread), which commences with the minimum virtual data and concludes with the maximum virtual data. Both methods are evaluated using an open dataset, wherein we measure the frequency of class changes to assess their effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bharadiya, J.: A tutorial on principal component analysis for dimensionality reduction in machine learning. Int. J. Innov. Res. Sci. Eng. Technol. 8, 2028–2032 (2023)
Borda, J.: Mémoire sur les élections au scrutin. Histoire de l’Académie royale des sciences, Paris (1781)
Boucetta, C., Hussenet, L., Herbin, M.: Practical method for multidimensional data ranking: Application for virtual machine migration. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2022, vol. 1585, pp. 267–277. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06668-9_19
Boucetta, C., Hussenet, L., Herbin, M.: Improved euclidean distance in the k nearest neighbors method. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2023, vol. 1876, pp. 315–324. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-40852-6_17
Condorcet, N.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)
Herbin, M., Aït-Younes, A., Blanchard, F., Gillard, D.: Rank-based similarity index (rbsi) in a multidimensional dataset. In: Lüke, K.H., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2019, vol. 1041, pp. 159–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22482-0_12
Herrero, C., Villar, A.: Group decisions from individual rankings: the borda-condorcet rule. Eur. J. Oper. Res. 291, 757–765 (2020)
Jolliffe, I., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 374, 20150202 (2016)
Kemeny, J.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
Mekala, M.S., Viswanathan, P.: Energy-efficient virtual machine selection based on resource ranking and utilization factor approach in cloud computing for iot. Comput. Electr. Eng. 73, 227–244 (2019)
Seo, J., Shneiderman, B.: A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In: IEEE Symposium on Information Visualization, pp. 65–72 (2004)
Tharwat, A.: Principal component analysis - a tutorial. Int. J. Appl. Pattern Recogn. 3, 197 (2016)
Wang, H., Lu, H., Sun, J., Safo, S.: Interpretable deep learning methods for multiview learning. BMC Bioinf. 25, 1–30 (2024)
Zhang, Y., Zhang, W., Pei, J., Lin, X., Lin, Q., Li, A.: Consensus-based ranking of multivalued objects: a generalized borda count approach. IEEE Trans. Knowl. Data Eng. 26, 83–96 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hussenet, L., Boucetta, C., Herbin, M. (2024). Spanning Thread: A Multidimensional Classification Method for Efficient Data Center Management. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-60433-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60432-4
Online ISBN: 978-3-031-60433-1
eBook Packages: Computer ScienceComputer Science (R0)