Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2024 (CRYPTO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14925))

Included in the following conference series:

  • 526 Accesses

Abstract

Sponge hashing is a widely used class of cryptographic hash algorithms which underlies the current international hash function standard SHA-3. In a nutshell, a sponge function takes as input a bit-stream of any length and processes it via a simple iterative procedure: it repeatedly feeds each block of the input into a so-called block function, and then produces a digest by once again iterating the block function on the final output bits. While much is known about the post-quantum security of the sponge construction in the case when the block function is modeled as a random function or one-way permutation, the case of permutations allowing inverse queries, which more accurately models the construction underlying SHA-3, has so far remained a fundamental open problem.

In this work, we make new progress towards overcoming this barrier and show several results. First, we prove the “double-sided zero-search” conjecture proposed by Unruh (eprint’ 2021) and show that finding zero-pairs in a random 2n-bit permutation requires at least \(\varOmega (2^{n/2})\) queries—and this is tight due to Grover’s algorithm. At the core of our proof lies a novel “symmetrization argument” which uses insights from the theory of Young subgroups. Second, we consider more general variants of the double-sided search problem and show similar query lower bounds for them. As an application, we prove the quantum one-wayness of the single-round sponge with invertible permutations in the quantum random permutation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This was pointed out by Unruh [15].

  2. 2.

    More formally, we require that \(\sigma \) and \(\omega \) map strings of the form \((x||0^n)\) to \((y||0^n)\), for \(x,y \in \{0,1\}^n\).

  3. 3.

    \(W^K\) has a well-defined extension to all \(|f\rangle _F\) since we just need to XOR the string \((0^n||1^n)\) into the function output whenever the input is of the form \((x_1||y)\), for \(x_1 \in K\) and \(y \in \{0,1\}^n\).

  4. 4.

    For two linear operators A and B, the commutator is defined as \([A,B] := AB-BA\).

  5. 5.

    If the output is not of this form, simply output 0 (guess \(\varphi \) has no zero pairs).

References

  1. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC (2014)

    Google Scholar 

  2. Damgård, I.B.: Collision Free hash functions and public key signature schemes. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology — EUROCRYPT ’87, pp. 203–216. Springer, Berlin, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_19

  3. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87, pp. 369–378. Springer, Berlin, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

  4. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings, pp. 218–238. Springer, New York, NY (2001). https://doi.org/10.1007/0-387-34805-0_21

  5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak sha-3 submission. Submission to NIST (Round 3) (2011)

    Google Scholar 

  6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions. Submission to NIST (Round 3) (2011)

    Google Scholar 

  7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008: 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pp. 181–197. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_11

  8. Freitag, C., Ghoshal, A., Komargodski, I.: Time-space tradeoffs for sponge hashing: attacks and limitations for short collisions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part III, pp. 131–160. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_5

  9. Akshima, Duan, X., Guo, S., Liu, Q.: On time-space lower bounds for finding short collisions in sponge hash functions. In: Rothblum, G., Wee, H. (eds.) Theory of Cryptography: 21st International Conference, TCC 2023, Taipei, Taiwan, November 29–December 2, 2023, Proceedings, Part III, pp. 237–270. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-48621-0_9

  10. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  11. Regev, O.: An efficient quantum factoring algorithm (2024)

    Google Scholar 

  12. Czajkowski, J., Bruinderink, L.G., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. Cryptology ePrint Archive, Paper 2017/771 (2017). https://eprint.iacr.org/2017/771

  13. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive, Paper 2019/428 (2019). https://eprint.iacr.org/2019/428

  14. Zhandry, M.: Redeeming reset indifferentiability and applications to post-quantum security. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part I, pp. 518–548. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_18

  15. Unruh, D.: Compressed permutation oracles (and the collision-resistance of sponge/sha3). Cryptology ePrint Archive, Paper 2021/062 (2021). https://eprint.iacr.org/2021/062

  16. Unruh, D.: Towards compressed permutation oracles. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023: 29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part IV, pp. 369–400. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-8730-6_12

  17. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. Cryptology ePrint Archive, Paper 2018/276 (2018). https://eprint.iacr.org/2018/276

  18. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)

    Article  MathSciNet  Google Scholar 

  19. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)

    Article  MathSciNet  Google Scholar 

  20. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles. Cryptology ePrint Archive, Paper 2018/904 (2018). https://eprint.iacr.org/2018/904

  21. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011: 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pp. 41–69. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

  22. Rosmanis, A.: Tight bounds for inverting permutations via compressed oracle arguments (2022)

    Google Scholar 

  23. Alagic, G., Bai, C., Poremba, A., Shi, K.: On the two-sided permutation inversion problem (2023)

    Google Scholar 

  24. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  25. Chvatal, V.: The tail of the hypergeometric distribution. Discret. Math. 25(3), 285–287 (1979)

    Article  MathSciNet  Google Scholar 

  26. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  27. Alagic, G., Jeffery, S., Ozols, M., Poremba, A.: On quantum chosen-ciphertext attacks and learning with errors. Cryptography 4(4) (2020)

    Google Scholar 

  28. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, (New York, NY, USA), pp. 212–219, Association for Computing Machinery (1996)

    Google Scholar 

  29. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46, 493–505 (1998)

    Article  Google Scholar 

  30. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)

    Article  Google Scholar 

  31. Dohotaru, C., Høyer, P.: Exact quantum lower bound for grover’s problem. Quantum Info. Comput. 9, 533–540 (2009)

    MathSciNet  Google Scholar 

  32. James, T.R.: Theory of the Symmetric Group. Cambridge University Press, Encyclopedia of Mathematics and its Applications (1984)

    Google Scholar 

  33. Jones, A.R.: A combinatorial approach to the double cosets of the symmetric group with respect to young subgroups. Eur. J. Comb. 17(7), 647–655 (1996)

    Article  MathSciNet  Google Scholar 

  34. Wildon, M.: A model for the double cosets of young subgroups. University of London, Royal Holloway (2024)

    Google Scholar 

  35. Ambainis, A., Magnin, L., Roetteler, M., Roland, J.: Symmetry-assisted adversaries for quantum state generation In: 2011 IEEE 26th Annual Conference on Computational Complexity. IEEE (2011)

    Google Scholar 

  36. Alagic, G., Bai, C., Katz, J., Majenz, C.: Post-quantum security of the even-Mansour cipher. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022: 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part III, pp. 458–487. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_17

Download references

Acknowledgments

We thank Gorjan Alagic, Chen Bai, Luke Schaeffer and Kaiyan Shi for many useful discussions. JC acknowledges funding from the Department of Defense. AP is supported by the National Science Foundation (NSF) under Grant No. CCF-1729369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Carolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carolan, J., Poremba, A. (2024). Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14925. Springer, Cham. https://doi.org/10.1007/978-3-031-68391-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68391-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68390-9

  • Online ISBN: 978-3-031-68391-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics