Abstract
Dynamic graphs are essential for analyzing complex systems like social or communication networks, allowing researchers to study behaviors and evolution over time. Edge privacy, a key concern in dynamic graphs, involves safeguarding sensitive information about individual connections while the network structure evolves. This paper explores the feasibility of protecting dynamic graphs with differential privacy and using them for effective link prediction, emphasizing the importance of integrating privacy measures into dynamic graph analysis. We evaluate the performance of link prediction algorithms on protected graphs, demonstrating how privacy-enhancing techniques can bolster the robustness and confidentiality of link prediction within evolving network environments. Our study contributes towards establishing more secure and dependable analyses of dynamic network structures by showcasing the practical benefits of edge privacy in link prediction tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
As rank. https://catalog.caida.org/dataset/as_rank. Accessed 25 Jan 2023
Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at scale: local differential privacy in practice. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD 2018, pp. 1655–1658. Association for Computing Machinery, New York, NY, USA (2018)
De, A., Chakrabarti, S.: Differentially private link prediction with protected connections. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 63–71 (2021)
Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distribution of private networks. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 169–178. IEEE (2009)
Li, T., Zhang, J., Philip, S.Y., Zhang, Y., Yan, Y.: Deep dynamic network embedding for link prediction. IEEE Access 6, 29219–29230 (2018)
Lin, W., Li, B., Wang, C.: Towards private learning on decentralized graphs with local differential privacy. IEEE Trans. Inf. Forensics Secur. 17, 2936–2946 (2022)
Paul, S., Salas, J., Torra, V.: Adding edge local differential privacy to the dynamic stochastic block model. In: Artificial Intelligence Research and Development, pp. 273–276. IOS Press (2023)
Paul, S., Salas, J., Torra, V.: Edge local differential privacy for dynamic graphs. In: Arief, B., Monreale, A., Sirivianos, M., Li, S. (eds.) Security and Privacy in Social Networks and Big Data, pp. 224–238. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-5177-2_13
Priebe, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan statistics on Enron graphs. Comput. Math. Organiz. Theory 11, 229–247 (2005)
Qin, M., Yeung, D.Y.: Temporal link prediction: a unified framework, taxonomy, and review. ACM Comput. Surv. 56(4), 1–40 (2023)
Salas, J., González-Zelaya, V., Torra, V., Megías, D.: Differentially private graph publishing through noise-graph addition. In: Torra, V., Narukawa, Y. (eds.) MDAI 2023. LNCS, vol. 13890, pp. 253–264. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33498-6_18
Salas, J., Torra, V.: Differentially private graph publishing and randomized response for collaborative filtering. In: Proceedings of the 17th International Joint Conference on e-Business and Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris, France, 8–10 July 2020, pp. 415–422. ScitePress (2020)
Salas, J., Torra, V., Megías, D.: Towards measuring fairness for local differential privacy. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds.) DPM CBT 2022. LNCS, vol. 13619, pp. 19–34. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25734-6_2
Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Sig. Process. 8(4), 552–562 (2014)
Xue, G., Zhong, M., Li, J., Chen, J., Zhai, C., Kong, R.: Dynamic network embedding survey. Neurocomputing 472, 212–223 (2022)
Yang, C., Wang, H., Zhang, K., Chen, L., Sun, L.: Secure deep graph generation with link differential privacy. arXiv preprint arXiv:2005.00455 (2020)
Ye, Q., Hu, H., Au, M.H., Meng, X., Xiao, X.: LF-GDPR: a framework for estimating graph metrics with local differential privacy. IEEE Trans. Knowl. Data Eng. 34(10), 4905–4920 (2020)
Zhu, X., Tan, V.Y., Xiao, X.: Blink: link local differential privacy in graph neural networks via Bayesian estimation. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2651–2664 (2023)
Acknowledgements
This work is linked to the project SECURING PID2021-125962OB-C31, funded by the Spanish Ministry of Science and Innovation, la Agencia Estatal de Investigación and the European Regional Development Fund (FEDER fund). It is also supported by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union - NextGenerationEU, in the framework of the Recovery Plan, Transformation and Resilience, under the Calls UNICO I+D 5G 2021 (ref. number TSI-063000-2021-13- 6GENABLERS-SEC), and INCIBE (ARTEMISA International Chair of Cybersecurity and DANGER Strategic Project of Cybersecurity).
This work was partially supported by the Spanish Ministry under Grant PID2021-125962OB-C33 SECURING/NET, by the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) under Grant SGR2021-00643 and by the Plan de Recuperación, Transformación y Resiliencia funded with Next Generation EU funds through the project DANGER INCIBE-C062/23.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Salas, J., Borrego, C. (2024). Studying the Impact of Edge Privacy on Link Prediction in Temporal Graphs. In: Torra, V., Narukawa, Y., Kikuchi, H. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2024. Lecture Notes in Computer Science(), vol 14986. Springer, Cham. https://doi.org/10.1007/978-3-031-68208-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-68208-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68207-0
Online ISBN: 978-3-031-68208-7
eBook Packages: Computer ScienceComputer Science (R0)