Nothing Special   »   [go: up one dir, main page]

Skip to main content

Studying the Impact of Edge Privacy on Link Prediction in Temporal Graphs

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14986))

  • 121 Accesses

Abstract

Dynamic graphs are essential for analyzing complex systems like social or communication networks, allowing researchers to study behaviors and evolution over time. Edge privacy, a key concern in dynamic graphs, involves safeguarding sensitive information about individual connections while the network structure evolves. This paper explores the feasibility of protecting dynamic graphs with differential privacy and using them for effective link prediction, emphasizing the importance of integrating privacy measures into dynamic graph analysis. We evaluate the performance of link prediction algorithms on protected graphs, demonstrating how privacy-enhancing techniques can bolster the robustness and confidentiality of link prediction within evolving network environments. Our study contributes towards establishing more secure and dependable analyses of dynamic network structures by showcasing the practical benefits of edge privacy in link prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. As rank. https://catalog.caida.org/dataset/as_rank. Accessed 25 Jan 2023

  2. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at scale: local differential privacy in practice. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD 2018, pp. 1655–1658. Association for Computing Machinery, New York, NY, USA (2018)

    Google Scholar 

  3. De, A., Chakrabarti, S.: Differentially private link prediction with protected connections. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 63–71 (2021)

    Google Scholar 

  4. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distribution of private networks. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 169–178. IEEE (2009)

    Google Scholar 

  5. Li, T., Zhang, J., Philip, S.Y., Zhang, Y., Yan, Y.: Deep dynamic network embedding for link prediction. IEEE Access 6, 29219–29230 (2018)

    Article  Google Scholar 

  6. Lin, W., Li, B., Wang, C.: Towards private learning on decentralized graphs with local differential privacy. IEEE Trans. Inf. Forensics Secur. 17, 2936–2946 (2022)

    Article  Google Scholar 

  7. Paul, S., Salas, J., Torra, V.: Adding edge local differential privacy to the dynamic stochastic block model. In: Artificial Intelligence Research and Development, pp. 273–276. IOS Press (2023)

    Google Scholar 

  8. Paul, S., Salas, J., Torra, V.: Edge local differential privacy for dynamic graphs. In: Arief, B., Monreale, A., Sirivianos, M., Li, S. (eds.) Security and Privacy in Social Networks and Big Data, pp. 224–238. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-5177-2_13

    Chapter  Google Scholar 

  9. Priebe, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan statistics on Enron graphs. Comput. Math. Organiz. Theory 11, 229–247 (2005)

    Article  Google Scholar 

  10. Qin, M., Yeung, D.Y.: Temporal link prediction: a unified framework, taxonomy, and review. ACM Comput. Surv. 56(4), 1–40 (2023)

    Article  Google Scholar 

  11. Salas, J., González-Zelaya, V., Torra, V., Megías, D.: Differentially private graph publishing through noise-graph addition. In: Torra, V., Narukawa, Y. (eds.) MDAI 2023. LNCS, vol. 13890, pp. 253–264. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33498-6_18

  12. Salas, J., Torra, V.: Differentially private graph publishing and randomized response for collaborative filtering. In: Proceedings of the 17th International Joint Conference on e-Business and Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris, France, 8–10 July 2020, pp. 415–422. ScitePress (2020)

    Google Scholar 

  13. Salas, J., Torra, V., Megías, D.: Towards measuring fairness for local differential privacy. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds.) DPM CBT 2022. LNCS, vol. 13619, pp. 19–34. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25734-6_2

  14. Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Sig. Process. 8(4), 552–562 (2014)

    Article  Google Scholar 

  15. Xue, G., Zhong, M., Li, J., Chen, J., Zhai, C., Kong, R.: Dynamic network embedding survey. Neurocomputing 472, 212–223 (2022)

    Article  Google Scholar 

  16. Yang, C., Wang, H., Zhang, K., Chen, L., Sun, L.: Secure deep graph generation with link differential privacy. arXiv preprint arXiv:2005.00455 (2020)

  17. Ye, Q., Hu, H., Au, M.H., Meng, X., Xiao, X.: LF-GDPR: a framework for estimating graph metrics with local differential privacy. IEEE Trans. Knowl. Data Eng. 34(10), 4905–4920 (2020)

    Article  Google Scholar 

  18. Zhu, X., Tan, V.Y., Xiao, X.: Blink: link local differential privacy in graph neural networks via Bayesian estimation. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2651–2664 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is linked to the project SECURING PID2021-125962OB-C31, funded by the Spanish Ministry of Science and Innovation, la Agencia Estatal de Investigación and the European Regional Development Fund (FEDER fund). It is also supported by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union - NextGenerationEU, in the framework of the Recovery Plan, Transformation and Resilience, under the Calls UNICO I+D 5G 2021 (ref. number TSI-063000-2021-13- 6GENABLERS-SEC), and INCIBE (ARTEMISA International Chair of Cybersecurity and DANGER Strategic Project of Cybersecurity).

This work was partially supported by the Spanish Ministry under Grant PID2021-125962OB-C33 SECURING/NET, by the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) under Grant SGR2021-00643 and by the Plan de Recuperación, Transformación y Resiliencia funded with Next Generation EU funds through the project DANGER INCIBE-C062/23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salas, J., Borrego, C. (2024). Studying the Impact of Edge Privacy on Link Prediction in Temporal Graphs. In: Torra, V., Narukawa, Y., Kikuchi, H. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2024. Lecture Notes in Computer Science(), vol 14986. Springer, Cham. https://doi.org/10.1007/978-3-031-68208-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68208-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68207-0

  • Online ISBN: 978-3-031-68208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics